图像非局部均值滤波的原理和空间局部滤波不相同,局部空间滤波实质上是在频域上对图像进行滤波处理,而非局部均值滤波利用了噪声的非相关的特性。如下图所示,在一幅图像中,具有相同像素的图像块是很多的,而其中的噪声是不相关的。 我们假设无噪声像素块为f(x,y),加性噪声为n(x,y),那么加噪后 ...
图像非局部均值滤波的原理和空间局部滤波不相同,局部空间滤波实质上是在频域上对图像进行滤波处理,而非局部均值滤波利用了噪声的非相关的特性。如下图所示,在一幅图像中,具有相同像素的图像块是很多的,而其中的噪声是不相关的。 我们假设无噪声像素块为f(x,y),加性噪声为n(x,y),那么加噪后 ...
我们为了实现动态图像的滤波算法,用串口发送图像数据到FPGA开发板,经FPGA进行图像处理算法后,动态显示到VGA显示屏上,前面我们把硬件平台已经搭建完成了,后面我们将利用这个硬件基础平台上来实现基于FPGA的一系列图像处理基础算法。 椒盐噪声(salt & pepper ...
在图像采集和生成中会不可避免的引入噪声,图像噪声是指存在于图像数据中的不必要的或多余的干扰信息,这对我们对图像信息的提取造成干扰,所以要进行去噪声处理,常见的去除噪声的方法有均值滤波、中值滤波、高斯滤波等,这一篇要实现的是均值滤波。 均值滤波的方法是将图像数据生成3x3的矩阵或是5x5 ...
Non-Local Means 非局部均值去噪滤 传统的高斯滤波,均值滤波,为局部滤波,即对周围邻域的点加权生成当前点,加权因子反应出周围点对当前点的影响,这些加权因子基于某种理论获得,如高斯滤波基于低通,均值滤波认为点与点之间的影响是均匀的。 1.经典的Non-Local Means ...
首先编写卷积代码 保证可以实现各种size滤波 均值滤波 设计kernel很简单,初始化为1后遍历除以size平方即可 高斯滤波 费点儿力,这篇文章可以看一下便于理解 https://www.zhihu.com/question/54918332 代码总和 效果如下 ...
non-local Means(非局部均值)降噪算法及快速算法原理与 Non-Local Means算法原理:Non-Local Means顾名思义,这是一种非局部平均算法。何为局部平均滤波算法呢?那是在一个目标像素周围区域平滑取均值的方法,所以非局部均值滤波就意味着它使用图像中的所有像素 ...
...
1)选取初始数据中的k个对象作为初始的中心,每个对象代表一个聚类中心: 2) 3) 4) 2.鸢尾 ...