1. 谱聚类 给你博客园上若干个博客,让你将它们分成K类,你会怎样做?想必有很多方法,本文要介绍的是其中的一种——谱聚类。 聚类的直观解释是根据样本间相似度,将它们分成不同组。谱聚类的思想是将样本看作顶点,样本间的相似度看作带权的边,从而将聚类问题转为图分割问题:找到一种图 ...
谱聚类 spectral clustering 是广泛使用的聚类算法,比起传统的K Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也不复杂。在处理实际的聚类问题时,个人认为谱聚类是应该首先考虑的几种算法之一。下面我们就对谱聚类的算法原理做一个总结。 . 谱聚类概述 谱聚类是从图论中演化出来的算法,后来在聚类中得到了广泛的应用。它 ...
2016-12-29 11:11 242 148368 推荐指数:
1. 谱聚类 给你博客园上若干个博客,让你将它们分成K类,你会怎样做?想必有很多方法,本文要介绍的是其中的一种——谱聚类。 聚类的直观解释是根据样本间相似度,将它们分成不同组。谱聚类的思想是将样本看作顶点,样本间的相似度看作带权的边,从而将聚类问题转为图分割问题:找到一种图 ...
本文将对谱聚类的知识进行一些总结。目的在于记录自己的学习经历,当作自己的笔记来写。写得不好的地方欢迎交流指正。谱聚类是一种非常流行的聚类算法,它不需要对簇的类型有很强的假设,可以聚类任何形状的数据。 一、简要介绍 由于网上有许多的关于谱聚类的介绍,所以我这里只是简要介绍 ...
谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的。其中的最优是指最优目标函数不同,可以是割边最小分割——如图1的Smallest cut ...
谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的。其中的最优是指最优目标函数不同,可以是割边最小分割——如图1的Smallest cut(如后 ...
谱聚类(Spectral Clustering)详解 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的。其中的最优是指最优目标函数 ...
了一下,总觉得NMF与聚类非常相似,像是谱聚类的思想。在此将谱聚类的知识梳理一下,内容无法转载,不然直接转 ...
作者:桂。 时间:2017-04-13 21:19:41 链接:http://www.cnblogs.com/xingshansi/p/6706400.html 声明:欢迎被转载,不过记得注明出处哦~ 前言 本文为谱聚类的第二篇,主要梳理NCut算法,关于谱聚类的更多 ...
目录: 1、问题描述 2、问题转化 3、划分准则 4、总结 1、问题描述 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图(sub-Graph),使子图内部尽量相似,而子图间距离尽量距离较远,以达到 ...