假设一事件在任何长为t的时间内出现的次数v(t)服从参数为it的泊松分布(此处i为单位时间内事件发生的平均次数),则相邻两次事件的时间间隔T服从参数为i的指数分布。 解释: 直接从泊松分布解释比较困难。因为泊松分布是二项分布在一定条件下的近似,所以我们看二项分布。 设事件发生概率为p ...
一 先摆出泊松分布表达式: P x k lambda frac lambda k k e lambda 泊松分布的意义: 首先,泊松分布的描述对象是 离散随机变量 泊松分布是描述特定时间或者空间中事件的分布情况。泊松分布的参数 是单位时间 或单位面积 内随机事件的平均发生率。 泊松分布适合于描述单位时间 或空间 内随机事件发生的次数。 .一本书里,印刷错误的字的个数: 其中参数 由二项分布的期望n ...
2016-12-19 11:21 0 4535 推荐指数:
假设一事件在任何长为t的时间内出现的次数v(t)服从参数为it的泊松分布(此处i为单位时间内事件发生的平均次数),则相邻两次事件的时间间隔T服从参数为i的指数分布。 解释: 直接从泊松分布解释比较困难。因为泊松分布是二项分布在一定条件下的近似,所以我们看二项分布。 设事件发生概率为p ...
一、泊松分布 日常生活中,大量事件是有固定频率的。 某医院平均每小时出生3个婴儿 某公司平均每10分钟接到1个电话 某超市平均每天销售4包xx牌奶粉 某网站平均每分钟有2次访问 它们的特点就是,我们可以预估这些事件的总数,但是没法知道 ...
指数分布与泊松分布 一、总结 一句话总结: 泊松分布:$$P(X = k) = e^{-\lambda}\displaystyle\frac{\lambda^k}{k!}, \ k = 0, 1, 2,..., $$ 指数分布:$$f(x) = \begin{cases} \lambda ...
泊松分布的定义 设随机变量 X 所有可能取的值为 0 , 1, 2, ... , 且取各个值的概率为: \[P(X = k) = e^{-\lambda}\displaystyle\frac{\lambda^k}{k!}, \ k ...
前两天对两大连续型分布:均匀分布和指数分布的点估计进行了讨论,导出了我们以后会用到的两大分布:\(\beta\)分布和\(\Gamma\)分布。今天,我们将讨论离散分布中的泊松分布。其实,最简单的离散分布应该是两点分布,但由于在上一篇文章的最后,提到了\(\Gamma\)分布和泊松分布的联系 ...
指数分布:要等到一个随机事件发生,需要经历多久时间。 伽玛分布:要等到n个随机事件发生,需要经历多久时间。所以,伽玛分布可以看作是n个指数的独立随机变量的加总。 泊松分布:在特定时间里发生n个事件的概率。 2、从公式来看: X∼Gamma(α,λ),概率公式如下: 将a=1时,=1,代入到伽玛 ...
开始介绍之前还是老样子先吐槽一下教科书不说人话,喜欢端着,真是耽误了一群数学天才。 伯努利分布 伯努利分布很好理解,常见的例子就是抛硬币,假设硬币正面朝上的概率是 p,所以伯努利分布的概率质量函数(probability mass function,简写作pmf)是: 注意 ...
定义 指数分布的期望 \[EX = \frac{1}{\lambda} \] 证明 \[EX = \int_{-\infty}^{+\infty}xf(x)dx = \int_{0}^{+\infty}x\lambda e^{-\lambda x}dx = -\int_ ...