拉格朗日插值 牛顿插值 ...
本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法 牛顿迭代法 LU分解法 被调函数: 主函数: 拉格朗日插值法 被调函数: 主函数: 牛顿插值 被调函数: 主函数: TIP:主函数和被调函数要放在一个文件夹内。否则会引起调用错误 NOTE:本文对基本方法做了总结,你可以结合理论知识再来看代码,希望对你有所帮助 ...
2016-12-17 19:10 0 10229 推荐指数:
拉格朗日插值 牛顿插值 ...
题目描述 由小学知识得: \(n + 1\) 个 \(x\) 坐标不同的点确定唯一的最高次为 \(n\) 次的多项式 \(y = f(n)\) 。现在给出 \(n + 1\) 个点,求出这些点构成的多项式在某一位置的取值 拉格朗日插值法 假设给出的曲线是个二次多项式 \[f(x ...
退役前写的东西 令\(F(x)\)为\(n\)次项多项式 拉格朗日插值:\(f(x)=\sum\limits_{k=0}^n f(x_k)l_k(x)=\sum\limits_{k=0}^n f(x_k)\prod\limits_{i\neq k}^n \frac{x-x_i}{x_k-x_i ...
简陋的拉格朗日插值法学习过程 题目 已知 \(n\) 个点,确定了一个 \(n-1\) 次多项式 \(f\),求 \(f(x)\) 拉格朗日插值法 \[f(x)=\sum_{i=1}^ny_i\prod_{j \ne i}\frac{x-x_i}{x_i-x_j} \] 即可 ...
https://www.cnblogs.com/zwfymqz/p/10063039.html 觉得把zwfymqz大佬的博客粘上来就差不多了 本博客比较浅显,适合入门粗学,具体深入的话就看 attack 大佬的博客(就是上面的链接)吧 拉格朗日的公式 首先拉格朗日 ...
原文地址: 牛顿插值法,matlab编程计算 作者: lillian %保存文件名为New_Int.m %Newton基本插值公式 %x为向量,全部的插值节点 %y为向量,差值节点处的函数值 %xi为标量,是自变量 %yi为xi出的函数估计值 ...
拉格朗日插值法的最大毛病就是每次引入一个新的插值节点,基函数都要发生变化,这在一些实际生产环境中是不合适的,有时候会不断的有新的测量数据加入插值节点集, 因此,通过寻找n个插值节点构造的的插值函数与n+1个插值节点构造的插值函数之间的关系,形成了牛顿插值法。推演牛顿插值法的方式是归纳法,也就 ...