K-means聚类算法 K-means聚类算法也是聚类算法中最简单的一种了,但是里面包含的思想却不一般。 聚类属于无监督学习。在聚类问题中,给我们的训练样本是,每个,没有了y。 K-means算法是将样本聚类成k个簇(cluster),具体算法描述如下: 1、 随机选取k个聚类质心点 ...
摘要: .算法概述 .算法推导 .算法特性及优缺点 .注意事项 .实现和具体例子 .适用场合 内容: .算法概述 k means算法是一种得到最广泛使用的聚类算法。 它是将各个聚类子集内的所有数据样本的均值作为该聚类的代表点。 k means 计算过程: 随机选择k个类簇的中心 计算每一个样本点到所有类簇中心的距离,选择最小距离作为该样本的类簇 重新计算所有类簇的中心坐标,直到达到某种停止条件 迭 ...
2017-03-21 21:50 2 5690 推荐指数:
K-means聚类算法 K-means聚类算法也是聚类算法中最简单的一种了,但是里面包含的思想却不一般。 聚类属于无监督学习。在聚类问题中,给我们的训练样本是,每个,没有了y。 K-means算法是将样本聚类成k个簇(cluster),具体算法描述如下: 1、 随机选取k个聚类质心点 ...
初始目的 将样本分成K个类,其实说白了就是求一个样本例的隐含类别y,然后利用隐含类别将x归类。由于我们事先不知道类别y,那么我们首先可以对每个样例假定一个y吧,但是怎么知道假定的对不对呢?怎样评价假定的好不好呢? 我们使用样本的极大似然估计来度量,这里就是x和y的联合分布P(x,y ...
K-Means 概念定义: K-Means 是一种基于距离的排他的聚类划分方法。 上面的 K-Means 描述中包含了几个概念: 聚类(Clustering):K-Means 是一种聚类分析(Cluster Analysis)方法。聚类就是将数据对象分组成为多个类或者簇 ...
1.原文:http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006910.html K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用 ...
聚类分析是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好。 不同的簇类型 聚类旨在发现有用的对象簇,在现实中我们用到很多的簇的类型,使用不同的簇类型划分数据的结果是不同的,如下的几种簇类型。 明显分离的 可以看到(a)中不同组中任意两点 ...
K-means聚类算法(K-平均/K-均值算法)是最为经典也是使用最为广泛的一种基于距离的聚类算法。基于距离的聚类算法是指采用距离作为相似性量度的评价指标,也就是说当两个对象离得近时,两者之间的距离比较小,那么它们之间的相似性就比较大。 算法的主要思想是通过迭代过程把数据集划分为不同的类别 ...
1.K-Means定义: K-Means是一种无监督的基于距离的聚类算法,简单来说,就是将无标签的样本划分为k个簇(or类)。它以样本间的距离作为相似性的度量指标,常用的距离有曼哈顿距离、欧几里得距离和闵可夫斯基距离。两个样本点的距离越近,其相似度就越高;距离越远,相似度越低。 目的是,实现簇 ...
首先要来了解的一个概念就是聚类,简单地说就是把相似的东西分到一组,同 Classification (分类)不同,对于一个 classifier ,通常需要你告诉它“这个东西被分为某某类”这样一些例子,理想情况下,一个 classifier 会从它得到的训练集中进行“学习”,从而具备对未知数 ...