一、数据抽样 抽样的组织形式有: (1)简单随机抽样:按等概率原则直接从总体中抽取样本。该方法适用于个体分布均匀的场景。 (2)分层抽样:先对总体分组,再从每组中随机抽样。该方法适用于带有分类逻辑属性的数据。 (3)等距抽样:先将总体中的每个个体按顺序编号,计算抽样间隔,然后按照固定间隔 ...
需要重采样的数据文件 Libsvm format ,如heart scale : . : : : . : . : : : . : : . : : : . : : . : . : : : : . : : . : : .... 重采样后的数据保存文件 Libsvm format ,这里heart scale balance.txt Python code: from sklearn.datasets ...
2016-12-10 22:41 2 15056 推荐指数:
一、数据抽样 抽样的组织形式有: (1)简单随机抽样:按等概率原则直接从总体中抽取样本。该方法适用于个体分布均匀的场景。 (2)分层抽样:先对总体分组,再从每组中随机抽样。该方法适用于带有分类逻辑属性的数据。 (3)等距抽样:先将总体中的每个个体按顺序编号,计算抽样间隔,然后按照固定间隔 ...
定义 以二分类问题为例,假设我们的数据集是S,数据集中的多数类为S_maj,少数类为S_min,通常情况下把多数类样本的比例为100:1,1000:1,甚至是10000:1,这种情况下为不平衡数据,不平衡数据的学习即需要在如此分布不均匀的数据集中学习到有用的信息。 问题:不均衡 ...
在医学统计学或者流行病学里的现场调查、样本选择经常会提到一个词:随机抽样。随机抽样是为了保证各比较组之间均衡性的一个很重要的方法。那么今天介绍的第一个函数就是用于抽样的函数sample: > x= 1:10 ...
抽样示例操作: ...
所谓不平衡指的是:不同类别的样本数量差异非常大。 数据规模上可以分为大数据分布不均衡和小数据分布不均衡。大数据分布不均衡:例如拥有1000万条记录的数据集中,其中占比50万条的少数分类样本便于属于这种情况。小数据分布不均衡:例如拥有1000条数据样本的数据集中,其中占有10条的少数分类样本便于 ...
一、概述 公司使用是自己搭建的hadoop集群,版本2.7.3,最近发现出现了hdfs数据存储不均衡的现象,其中有一个datanode使用了65%,而有一个只使用了20%。hadoop集群使用的时间长了会出现这种数据不均衡的问题,当然hadoop提供了解决方案,就是使用balancer,默认进行 ...
本文作者用python代码示例解释了3种处理不平衡数据集的可选方法,包括数据层面上的2种重采样数据集方法和算法层面上的1个集成分类器方法。 分类是机器学习最常见的问题之一,处理它的最佳方法是从分析和探索数据集开始,即从探索式数据分析(Exploratory Data Analysis ...
处理样本不均衡数据一般可以有以下方法: 1、人为将样本变为均衡数据。 上采样:重复采样样本量少的部分,以数据量多的一方的样本数量为标准,把样本数量较少的类的样本数量生成和样本数量多的一方相同。 下采样:减少采样样本量多的部分,以数据量少的一方的样本数量为标准。 2、调节模型参数 ...