原文:第二篇:基于K-近邻分类算法的约会对象智能匹配系统

前言 假如你想到某个在线约会网站寻找约会对象,那么你很可能将该约会网站的所有用户归为三类: . 不喜欢的 . 有点魅力的 . 很有魅力的 你如何决定某个用户属于上述的哪一类呢 想必你会分析用户的信息来得到结论,比如该用户 每年获得的飞行常客里程数 , 玩网游所消耗的时间比 , 每年消耗的冰淇淋公升数 。 使用机器学习的K 近邻算法,可以帮助你在获取到用户的这三个信息后 或者更多信息 方法同理 ,自 ...

2017-01-19 08:53 0 1466 推荐指数:

查看详情

分类算法k-近邻算法(KNN)

一、k-近邻算法概述 1、什么是k-近邻算法 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。 2、欧式距离 两个样本的距离可以通过如下公式计算,又叫欧式距离。比方说计算a(a1,a2,a3),b(b1,b2,b3)样本 ...

Sat May 30 07:38:00 CST 2020 0 586
K-近邻算法

1. 概念 测量不同特征值之间的距离来进行分类 优点:精度高、对异常值不敏感、无数据输入假定 缺点:计算复杂度高、空间复杂度高。 适用范围:数值型和标称型 工作原理: 存在一个样本数据合计,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系 ...

Tue Feb 21 01:07:00 CST 2017 0 1812
k-近邻算法

系列文章:《机器学习实战》学习笔记 本章介绍了《机器学习实战》这本书中的第一个机器学习算法k-近邻算法,它非常有效而且易于掌握。首先,我们将探讨k-近邻算法的基本理论,以及如何使用距离测量的方法分类物品;其次我们将使用Python从文本文件中导入并解析数据;再次,本文讨论了当存在许多数据来源时 ...

Wed Jun 17 07:13:00 CST 2015 3 12363
第一K-近邻分类算法原理分析与代码实现

前言 本文介绍机器学习分类算法中的K-近邻算法并给出伪代码与Python代码实现。 算法原理 首先获取训练集中与目标对象距离最近的k对象,然后再获取这k对象分类标签,求出其中出现频数最大的标签。 而这个标签,就是分类的结果。 伪代码 对训练集做以下 ...

Thu Jan 19 16:49:00 CST 2017 0 1515
K-近邻算法(KNN)

K-近邻算法 K-K个 N-nearest-最近 N-Neighbor 来源:KNN算法最早是由Cover和Hart提出的一种分类算法 定义 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。 距离公式 ...

Wed Nov 13 19:42:00 CST 2019 0 279
K-近邻算法(KNN)

keyword     文本分类算法、简单的机器学习算法、基本要素、距离度量、类别判定、k取值、改进策略 摘要     kNN算法是著名的模式识别统计学方法,是最好的文本分类算法之一,在机器学习分类算法中占有相当大的地位 ...

Tue Oct 09 04:20:00 CST 2018 0 4011
K-近邻算法(KNN)

KNN算法是采用测量不同特征向量之间的距离的方法进行分类。 工作原理:存在一个数据集,数据集中的每个数据都有对应的标签,当输入一个新的没有标签的数据时,KNN算法找到与新数据特征量最相似的分类标签。 KNN算法步骤: (1)选择邻近的数量k和距离度量方法; (2)找到待分类样本的k个最近邻 ...

Wed Apr 18 16:46:00 CST 2018 0 1319
K-近邻算法-理论原理

一、K-近邻算法原理 如图所示,数据表中有两个属性,两个标签(A,B),预测最后一行属于哪种标签。 属性一 属性二 标签 2.1 1.2 A 1.3 2.5 B ...

Fri Jun 21 23:57:00 CST 2019 0 1138
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM