原文:菜鸟学四轴控制器之3:数字积分法DDA实现直线插补

上一篇的逐点比较法显然是无法画一条有倾角的直线的。因为X轴和Y轴永远都不同步,也就是像打台球一样,你打一个,我打一个,如果我进了球,我再接着打一个。 也就是说,如果直线为 度,也是没有办法画出来的,只能是锯齿形状。 如何实现X和Y同时动 也就是说,如果要画一条 度的线,X和Y同时动不就行了么 比如起点为 , ,终点为 , ,如果采用逐点比较法,则需要运动 次,如果两轴同时运动,则 步就可以实现了。 ...

2016-12-04 09:42 0 3340 推荐指数:

查看详情

菜鸟控制器之1:插是啥东西

之前看过运动控制芯片的手册,包括了NOVA的MCX314和PCL6045等,知道插的概念。 但是插到底是啥玩意,其实一直是有点疑惑的,然后就傻乎乎的去问一些专家,他们的说法是: 插可以同时多输出,速度很快。然后就不知道问啥了。 基于我之前做步进电机的经验,以及测试步进电机驱动的经验 ...

Sun Dec 04 08:36:00 CST 2016 0 4255
数字积分法DDADDA(Digital Differential Analyzer)

数字积分法DDADDA(Digital Differential Analyzer) 数字积分法又称数字微分分析法DDA(Digital differential Analyzer),是在数字积分器的基础上建立起来的一种插算法。数字积分法的优点是,易于实现多坐标联动 ...

Mon Feb 17 23:09:00 CST 2014 0 6441
菜鸟控制器之6:刀具半径补偿算法

为什么要有刀具补偿? 想象一下,如果我们的刀具可以理想到半径无穷小,倒是不需要考虑半径的补偿,但是实际上我们用到的是刀具的边沿在雕刻物体,如下图: 简单来看,好像是直接平行于轮廓进行移动就可以了,其实不然,单条直线的雕刻是平行,但是直线直线直线和圆弧,圆弧和圆弧都是不同的,并且!直线 ...

Wed Dec 07 07:29:00 CST 2016 0 1832
辛普森积分法

的方法,于是就有了辛普森积分法。 普通辛普森法 辛普森法的基本思想是将求解区间分成若干段,每一段都使用 ...

Fri Dec 25 06:57:00 CST 2020 0 444
分部积分法

具体见图片: ...

Mon Feb 22 00:19:00 CST 2021 0 1094
辛普森积分法小结

近来学了这个知识,似乎没有想象中的那么难。 问题:    已知$f(x)$, 求定积分$$\int_{L}^{R}f(x)dx$$ simpson公式:    设$f(x)\approx g(x)=Ax^2+Bx+C$   则有$$\int_{l}^{r}f(x)dx ...

Mon Mar 02 19:15:00 CST 2020 0 1052
蒙特卡洛积分法(一)

今天我们来讲一节数学课:蒙特卡洛积分 一般在工程实践中,面对的函数千变万化,我们很难直接计算得出某个函数的积分的解析解。为了求解函数积分的数值解,蒙特卡洛法是一种强大的积分方法。它的推导过程如下: 假设我们想去求得函数g的积分,首先根据大数定理,任意给定一个实数函数f和随机变量x~p(x ...

Fri Jan 03 04:30:00 CST 2020 0 4470
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM