原文链接:这里 介绍 反向传播算法可以说是神经网络最基础也是最重要的知识点。基本上所以的优化算法都是在反向传播算出梯度之后进行改进的。同时,也因为反向传播算法是一个递归的形式,一层一层的向后传播误差即可,很容易实现(这部分听不懂没关系,下面介绍)。不要被反向传播吓到,掌握其核心思想就很容易 ...
作者:匿名用户 链接:https: www.zhihu.com question answer 来源:知乎 著作权归作者所有,转载请联系作者获得授权。 BackPropagation算法是多层神经网络的训练中举足轻重的算法。 简单的理解,它的确就是复合函数的链式法则,但其在实际运算中的意义比链式法则要大的多。 要回答题主这个问题 如何直观的解释back propagation算法 需要先直观理解 ...
2016-12-02 16:37 0 5956 推荐指数:
原文链接:这里 介绍 反向传播算法可以说是神经网络最基础也是最重要的知识点。基本上所以的优化算法都是在反向传播算出梯度之后进行改进的。同时,也因为反向传播算法是一个递归的形式,一层一层的向后传播误差即可,很容易实现(这部分听不懂没关系,下面介绍)。不要被反向传播吓到,掌握其核心思想就很容易 ...
1. 反向传播算法介绍 误差反向传播(Error Back Propagation)算法,简称BP算法。BP算法由信号正向传播和误差反向传播组成。它的主要思想是由后一级的误差计算前一级的误差,从而极大减少运算量。 设训练数据为\(\{\bm{(x^{(1)},y^{(1)}),\cdots,(x ...
知识回顾 1:首先引入一些便于稍后讨论的新标记方法: 假设神经网络的训练样本有m个,每个包含一组输入x和一组输出信号y,L表示神经网络的层数,S表示每层输入的神经元的个数,SL代表最后一层中处理的 ...
BP算法为深度学习中参数更新的重要角色,一般基于loss对参数的偏导进行更新。 一些根据均方误差,每层默认激活函数sigmoid(不同激活函数,则更新公式不一样) 假设网络如图所示: 则更新公式为: 以上列举了最后2层的参数更新方式,第一层的更新公式类似,即上一层的误差来自于下一层 ...
反向传播算法是深度学习的最重要的基础,这篇博客不会详细介绍这个算法的原理和细节。,如果想学习反向传播算法的原理和细节请移步到这本不错的资料。这里主要讨论反向传播算法中的一个小细节:反向传播算法为什么要“反向”? 背景 在机器学习中,很多算法最后都会转化为求一个目标损失函数(loss ...
全文参考《机器学习》-周志华中的5.3节-误差逆传播算法;整体思路一致,叙述方式有所不同; 使用如上图所示的三层网络来讲述反向传播算法; 首先需要明确一些概念, 假设数据集\(X=\{x^1, x^2, \cdots, x^n\}, Y=\{y^i, y^2, \cdots, y^n ...
假设给定m个训练样本的训练集,用梯度下降法训练一个神经网络,对于单个训练样本(x,y),定义该样本的损失函数: 那么整个训练集的损失函数定义如下: 第一项是所有样本的方差的均值。第二项是一 ...
在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结。 1. DNN反向传播算法要解决的问题 在了解DNN的反向传播算法前,我们先要知道DNN反向传播 ...