自定义损失函数 In statistics, the Huber loss is a loss function used in robust regression, that is less sensitive to outliers in data than the squared ...
http: lazycoderx.com keras E BF D E AD E A A E E B E B E BD BF E A E AA E AE A E B E D F E A B E BD E B http: www.voidcn.com blog zjm article p .html ...
2016-11-30 21:53 0 3114 推荐指数:
自定义损失函数 In statistics, the Huber loss is a loss function used in robust regression, that is less sensitive to outliers in data than the squared ...
自定义损失函数:根据问题的实际情况,定制合理的损失函数。 例如: 对于预测酸奶日销量问题,如果预测销量大于实际销量则会损失成本;如果预测销量小于实际销量则会损失利润。在实际生活中,往往制造一盒酸奶的成本和销售一盒酸奶的利润是不等价的。因此,需要使用符合该问题的自定义损失函数。 自定义损失函数 ...
1.自定义层 对于简单、无状态的自定义操作,你也许可以通过 layers.core.Lambda 层来实现。但是对于那些包含了可训练权重的自定义层,你应该自己实现这种层。 这是一个 Keras2.0 中,Keras 层的骨架(如果你用的是旧的版本,请更新到新版)。你只需要实现三个方法即可 ...
转:http://blog.itpub.net/31545819/viewspace-2215108/ 介绍 梯度提升技术在工业中得到了广泛的应用,并赢得了许多Kaggle比赛。(https://github.com/Microsoft/LightGBM/blob/master ...
的损失函数,本篇为tensorflow自定义损失函数。 (一)tensorflow内置的四个损 ...
这个自定义损失函数的背景:(一般回归用的损失函数是MSE, 但要看实际遇到的情况而有所改变) 我们现在想要做一个回归,来预估某个商品的销量,现在我们知道,一件商品的成本是1元,售价是10元。 如果我们用均方差来算的话,如果预估多一个,则损失一块钱,预估少一个,则损失9元钱(少赚 ...
Keras中自定义复杂的loss函数 By 苏剑林 | 2017-07-22 | 92497位读者 | Keras是一个搭积木式的深度学习框架,用它可以很方便且直观地搭建一些常见的深度学习模型。在tensorflow出来之前,Keras就已经几乎是当时最火的深度学习框架 ...
tensorflow2自定义损失函数 一、总结 一句话总结: 直接定义函数,然后在compile时传给loss即可 二、tensorflow2自定义损失函数 转自或参考:tensorflow2.x学习笔记十七:自定义网络层、模型以及损失函数https ...