Spark mlib的本地向量有两种: DenseVctor :稠密向量 其创建方式 Vector.dense(数据) SparseVector :稀疏向量 其创建方式有两种: 方法一:Vector.sparse(向量长度,索引数组,与索引数组所对应的数值数组 ...
http: blog.csdn.net canglingye article details 相互转换 :http: stackoverflow.com questions sparsevector to densevector conversion in pyspark 稀疏矩阵和稠密矩阵可以转换成数组 数组可以转换成稠密矩阵 稀疏矩阵不能直接转换为稠密矩阵,需要先转换为数组 但是,数组和稠密矩 ...
2016-11-29 20:42 0 2340 推荐指数:
Spark mlib的本地向量有两种: DenseVctor :稠密向量 其创建方式 Vector.dense(数据) SparseVector :稀疏向量 其创建方式有两种: 方法一:Vector.sparse(向量长度,索引数组,与索引数组所对应的数值数组 ...
http://blog.csdn.net/nkwangjie/article/details/17502443 http://blog.csdn.net/bitcarmanlee/article/details/52668477 稀疏矩阵有很多种,这里总结2种: from ...
一个向量(1.0,0.0,3.0)它有2中表示的方法 密集:[1.0,0.0,3.0] 其和一般的数组无异 稀疏:(3,[0,2],[1.0,3.0]) 其表示的含义(向量大小,序号,值) 序号从0开始 本地向量和矩阵 本地向量(Local Vector)存储在单台机 ...
2.4矩阵的特征值与特征向量 矩阵特征值的数学定义 求矩阵的特征值与特征向量 特征值的几何意义 1.矩阵特征值的数学定义 设A是n阶方阵,如果存在常数λ和n维非零列向量x,使得等式Ax=λx成立,则称λ为A的特征值,x是对应特征值λ的特征向量。 2.求矩阵的特征值与特征向量 ...
1、向量的创建 1)直接输入: 行向量:a=[1,2,3,4,5] 列向量:a=[1;2;3;4;5] 2)用“:”生成向量 a=J:K 生成的行向量是a=[J,J+1,…,K] a=J:D:K 生成行向量a=[J,J+D,…,J+m*D ...
这下面的练习中,需要自己将spark的jar包 添加进来。 1.spark Mlib 底层使用的向量、矩阵运算使用了Breeze库。 scalaNLP 是一套 机器学习和数值技算的库。它主要是关于科学技术(sc)、机器学习(ML)和自然语言处理(NLP)的。它包括三个库,Breeze、Epic ...
稀疏矩阵的定义 对于那些零元素数目远远多于非零元素数目,并且非零元素的分布没有规律的矩阵称为稀疏矩阵(sparse)。 人们无法给出稀疏矩阵的确切定义,一般都只是凭个人的直觉来理解这个概念,即矩阵中非零元素的个数远远小于矩阵元素的总数,并且非零元素没有分布规律。 稀疏矩阵的压缩存储 ...
这个代码貌似有点问题,运行结果就不贴了。 这是我写的代码: 运行结果: ...