前置知识 完全剩余系 百度百科: 从模n的每个剩余类中各取一个数,得到一个由n个数组成的集合,叫做模n的一个完全剩余系。 简单点说,n的完全剩余系就是0到n-1的集合。 缩剩余系 ...
Description Given A,B,C, You should quickly calculate the result of A B mod C. lt A,C lt , lt B lt . Input There are multiply testcases. Each testcase, there is one line contains three integers A, B ...
2016-11-22 21:42 0 1373 推荐指数:
前置知识 完全剩余系 百度百科: 从模n的每个剩余类中各取一个数,得到一个由n个数组成的集合,叫做模n的一个完全剩余系。 简单点说,n的完全剩余系就是0到n-1的集合。 缩剩余系 ...
uper A^B mod C Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & ...
(所有^为次方) 欧拉定理: a^phi(m)=1 (mod m) ( gcd(a,m)=1 ) 设1到m中与m互质的数为 x1, x2, x3, ……x phi(m) 令pi=xi*a 引理一:p之间两两模m不同余,x之间两两模m不同于 x两两模m不同样因为都小于等于m ...
摘要 本文主要介绍了数论中的欧拉定理,进而介绍欧拉定理的拓展及应用,结合例题展示如何使用拓展欧拉定理实现降幂取模。 在数论中,欧拉定理,(也称费马-欧拉定理)是一个关于同余的性质定理。了解欧拉定理之前先来看一下费马小定理: a是不能被质数p整除的正整数 ...
$ 的时候,欧拉公式可简化成为: $$e^{i\pi} + 1 = 0$$ 如果不了解什么是复数以及复平 ...
1. 欧拉公式的发现 1740年10月8日,欧拉(Leonhard Euler ,1707~1783)写了一封信给他的老师约翰·伯努利(Johann Bernoulli,1667 ~ 1748),信中他提到一个发现,微分方程: 微分方程的解可以用两种方式给出,即: 微分方程 ...
欧拉公式的证明 前言 在数学史上,有一个令人着迷的公式: \[e^{i\pi}+1=0 \] 它将数学里最重要的几个数字联系到了一起:两个超越数:自然常数 \(e\) ,圆周率 \(\pi\) ,虚数单位 \(i\) 和自然数的单位 ...
e^(ix)=cosx+isinx cosx=[e(ix)+e(-ix)]/2 sinx=[e(ix)-e(-ix)]/(2i) 也可以展开为级数形式: sinx=x-x3/3!+x5/5!-... ...