摘要: 1.概述 2.激活函数与导数 3.激活函数对比 4.参考链接 内容: 1.概述 深度学习的基本原理是基于人工神经网络,信号从一个神经元进入,经过非线性的activation function,传入到下一层神经元;再经过该层神经元的activate,继续 ...
摘要: 1.概述 2.激活函数与导数 3.激活函数对比 4.参考链接 内容: 1.概述 深度学习的基本原理是基于人工神经网络,信号从一个神经元进入,经过非线性的activation function,传入到下一层神经元;再经过该层神经元的activate,继续 ...
附python代码如下: 原始的pdf文档如果需要可以在https://pan.baidu.com/s/1GhGu2c_RVmKj4hb_bje0Eg下载. ...
深度学习中常用的优化器简介 SGD mini-batch SGD 是最基础的优化方法,是后续改良方法的基础。下式给出SGD的更新公式 \[\theta_t = \theta_{t-1} - \alpha\nabla_\theta J(\theta) \] 其中\(\alpha ...
参考:https://blog.csdn.net/xbinworld/article/details/45619685 参考:https://blog.csdn.net/fate_fjh/artic ...
现在对 CNN 有了一定的了解,同时在 GitHub 上找了几个 examples 来学习,对网络的搭建有了笼统地认识,但是发现有好多基础 pytorch 的知识需要补习,所以慢慢从官网 API 进行学习吧。 AUTOGRAD MECHANICS(自动求导机制) 这一部分做了解处理 ...
0. 标量、向量、矩阵互相求导的形状 标量、向量和矩阵的求导(形状) 标量x (1,) 向量x (n,1) 矩阵X (n,k) 标量y (1,) $\frac{\partial y ...
1、sigmoid函数 sigmoid函数,也就是s型曲线函数,如下: 函数: 导数: 上面是我们常见的形式,虽然知道这样的形式,也知道计算流程,不够感觉并不 ...
1. mat() mat()与array的区别: mat是矩阵,数据必须是2维的,是array的子集,包含array的所有特性,所做的运算都是针对矩阵来进行的。 array是数组,数据可以是多维 ...