关于在51CTO上的深度学习入门课程视频(9)中的code进行解释与总结: (1)单层神经网络: (2)双层神经网络: summing up:这里单层网络和双层神经网络的代码中,有几个变量要注意一下;第一个是误差变量,单层网络中是l1_error ...
代码 如下: 迭代两百次,loss值到后面开始趋于饱和,accuracy为 . ,可见这种单层的神经网络和线性分类得到的最终效果并不好,效果图如下: 下面我们来使用双层神经网络和relu激活函数来进行非线性分类,代码如下: ...
2016-11-17 11:14 0 1420 推荐指数:
关于在51CTO上的深度学习入门课程视频(9)中的code进行解释与总结: (1)单层神经网络: (2)双层神经网络: summing up:这里单层网络和双层神经网络的代码中,有几个变量要注意一下;第一个是误差变量,单层网络中是l1_error ...
目前,深度学习(Deep Learning,简称DL)在算法领域可谓是大红大紫,现在不只是互联网、人工智能,生活中的各大领域都能反映出深度学习引领的巨大变革。要学习深度学习,那么首先要熟悉神经网络(Neural Networks,简称NN)的一些基本概念。当然,这里所说的神经网络不是生物学 ...
参考资料: https://morvanzhou.github.io/ 非常感谢莫烦老师的教程 http://mnemstudio.org/path-finding-q-learning-tutorial.htm http://www.cnblogs.com/dragonir/p ...
写在前面的废话: 出了托福成绩啦,本人战战兢兢考了个97!成绩好的出乎意料!喜大普奔!撒花庆祝! 傻…………寒假还要怒学一个月刷100庆祝个毛线………… 正题: 题目是CNN,但是C ...
反向传播算法是大多数神经网络的基础,我们应该多花点时间掌握它。 还有一些技术能够帮助我们改进反向传播算法,从而改进神经网络的学习方式,包括: 选取更好的代价函数 正则化方法 初始化权重的方法 如何选择网络的超参 Cost Function 这里来看一个非常简单的神经 ...
深度学习其实就是有更多隐层的神经网络,可以学习到更复杂的特征。得益于数据量的急剧增多和计算能力的提升,神经网络重新得到了人们的关注。 1. 符号说明 2. 激活函数 为什么神经网络需要激活函数呢?如果没有激活函数,可以推导出神经网络的输出y是关于输入x的线性组合 ...
0. 词向量是什么 自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化。 NLP 中最直观,也是到目前为止最常用的词表示方法是 One-hot Represen ...
原址:https://blog.csdn.net/fangqingan_java/article/details/53014085 概述 循环神经网络(RNN-Recurrent Neural Network)是神经网络家族中的一员,擅长于解决序列化相关问题。包括不限于序列化标注问题、NER ...