梯度下降是一个在机器学习中用于寻找较佳结果(曲线的最小值)的迭代优化算法。梯度的含义是斜率或者斜坡的倾斜度。下降的含义是代价函数的下降。算法是迭代的,意思是需要多次使用算法获取结果,以得到最 ...
原文: http: blog.csdn.net sinat article details 深度学习中经常看到epoch iteration和batchsize,下面按自己的理解说说这三个的区别: batchsize:批大小。在深度学习中,一般采用SGD训练,即每次训练在训练集中取batchsize个样本训练 iteration: 个iteration等于使用batchsize个样本训练一次 ep ...
2016-11-12 17:24 0 2493 推荐指数:
梯度下降是一个在机器学习中用于寻找较佳结果(曲线的最小值)的迭代优化算法。梯度的含义是斜率或者斜坡的倾斜度。下降的含义是代价函数的下降。算法是迭代的,意思是需要多次使用算法获取结果,以得到最 ...
原 训练时的Iteration、batchsize、epoch和loss的关系 2019年05月17日 17:17:15 GL3_24 阅读数 351 更多 ...
batch 深度学习的优化算法,说白了就是梯度下降。每次的参数更新有两种方式。 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度。这种方法每更新一次参数都要把数据集里的所 ...
写在前面: 从别处复制过来,感觉写的清晰明了,当作复习材料,原作者链接在文末。 在训练神经网络的时候,我们难免会看到Batch、Epoch和Iteration这几个概念。曾对这几个概念感到模糊,看了网上的一些文章后,在这里做几个小小的总结。 👉如有错误之处,还望指出。 名词解释 ...
epoch:训练时,所有训练图像通过网络训练一次(一次前向传播+一次后向传播);测试时,所有测试图像通过网络一次(一次前向传播)。Caffe不用这个参数。 batch_size:1个batch包含的图像数目,通常设为2的n次幂,常用的包括64,128,256 ...
转自:https://blog.csdn.net/qq_18668137/article/details/80883350 深度学习的优化算法,说白了就是梯度下降。每次的参数更新有两种方式。 第一 ...
原文:https://blog.csdn.net/qq_18668137/article/details/80883350 此处谨作学习记录之用。 深度学习的优化算法,说白了就是梯度下降。每 ...
@tags caffe 概念 一个epoch表示“大层面上的一次迭代”,也就是指,(假定是训练阶段)处理完所有训练图片,叫一个epoch 但是每次训练图片可能特别多,内存/显存塞不下,那么每个epoch内,将图片分成一小堆一小堆的,每一小堆图片数量相等,每一小堆就是一个batch(批次 ...