LR是一个传统的二分类模型,它也可以用于多分类任务,其基本思想是:将多分类任务拆分成若干个二分类任务,然后对每个二分类任务训练一个模型,最后将多个模型的结果进行集成以获得最终的分类结果。一般来说,可以采取的拆分策略有: one vs one策略 假设我们有N个类别,该策略基本思想 ...
感谢皮果提的文章: http: blog.csdn.net itplus article details http: blog.csdn.net itplus article皮果提是个大牛 目录 第 节预备知识 . 分类问题的描述 . 拉格朗日乘子法 第 节Two classes 情形的数学推导 . 基本思想 . 目标函数 . 极值求解 . 阀值选取 第 节推广到 Multi classes 情形 ...
2016-10-27 10:47 0 2156 推荐指数:
LR是一个传统的二分类模型,它也可以用于多分类任务,其基本思想是:将多分类任务拆分成若干个二分类任务,然后对每个二分类任务训练一个模型,最后将多个模型的结果进行集成以获得最终的分类结果。一般来说,可以采取的拆分策略有: one vs one策略 假设我们有N个类别,该策略基本思想 ...
、甚至可以用皮尔森相关系数等。朴素贝叶斯分类用的就是Bayes判别法。本文要讲的线性判别分析就是用是F ...
LDA, Linear Discriminant Analysis,线性判别分析。注意与LDA(Latent Dirichlet Allocation,主题生成模型)的区别。 1、引入 上文介绍的PCA方法对提取样本数据的主要变化信息非常有效,而忽略了次要变化的信息。在有些情况下,次要信息 ...
线性判别分析 线性判别分析(linear discriminant analysis,LDA)是对费舍尔的线性鉴别方法的归纳,这种方法使用统计学,模式识别和机器学习方法,试图找到两类物体或事件的特征的一个线性组合,以能够特征化或区分它们。所得的组合可用来作为一个线性分类器,或者,更常见 ...
LDA算法入门(原文:https://blog.csdn.net/warmyellow/article/details/5454943) 一. LDA算法概述: 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher ...
转自 http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值 ...
转自 http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值 ...
与Logistic 回归的关系 6 Softmax 回归 vs. k 个二元分类器 ...