这个算法中文名为k均值聚类算法,首先我们在二维的特殊条件下讨论其实现的过程,方便大家理解。 第一步.随机生成质心 由于这是一个无监督学习的算法,因此我们首先在一个二维的坐标轴下随机给定一堆点,并随即给定两个质心,我们这个算法的目的就是将这一堆点根据它们自身的坐标特征分为两类,因此选取了两个质心 ...
最近在苦于思考kmeans算法的MPI并行化,花了两天的时间把该算法看懂和实现了串行版。 聚类问题就是给定一个元素集合V,其中每个元素具有d个可观察属性,使用某种算法将V划分成k个子集,要求每个子集内部的元素之间相异度尽可能低,而不同子集的元素相异度尽可能高。 下面是google到该算法的一个流程图,表意清楚: 随机选取数据集中的k个数据点作为初始的聚类中心: 分别计算每个数据点到每个中心的距离 ...
2016-10-26 17:06 0 5438 推荐指数:
这个算法中文名为k均值聚类算法,首先我们在二维的特殊条件下讨论其实现的过程,方便大家理解。 第一步.随机生成质心 由于这是一个无监督学习的算法,因此我们首先在一个二维的坐标轴下随机给定一堆点,并随即给定两个质心,我们这个算法的目的就是将这一堆点根据它们自身的坐标特征分为两类,因此选取了两个质心 ...
”。 1.2 KMeans算法的实现原理 KMeans聚类算法实现的原理就是簇内数据相似性最高,不同簇类的数据 ...
Kmeans聚类算法 1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类 ...
本人以前主要focus在传统音频的软件开发,接触到的算法主要是音频信号处理相关的,如各种编解码算法和回声消除算法等。最近切到语音识别上,接触到的算法就变成了各种机器学习算法,如GMM等。K-means作为其中比较简单的一种肯定是要好好掌握的。今天就讲讲K-means的基本原理和代码实现 ...
实现文档聚类的总体思想: 将每个文档的关键词提取,形成一个关键词集合N; 将每个文档向量化,可以参看计算余弦相似度那一章; 给定K个聚类中心,使用Kmeans算法处理向量; 分析每个聚类中心的相关文档,可以得出最大的类或者最小的类等; 将已经分好词的文档提取关键词,统计 ...
数据结构算法题目集 改天有空再弄一个目录索引。 试设计算法,对带头结点的单链表实现就地逆置,即利用原单链表中的结点的存储单元,将链表逆置。 设计在顺序有序表中实现二分查找的算法。 设计在单链表中删除值相同的多余结点的算法 ...
最近在网上查看用MapReduce实现的Kmeans算法,例子是不错,http://blog.csdn.net/jshayzf/article/details/22739063 但注释太少了,而且参数太多,如果新手学习的话不太好理解。所以自己按照个人的理解写了一个简单的例子并添加了详细的注释 ...
路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。 其基本思想是,设置 ...