最小二乘法的概念 最小二乘法要关心的是对应的cost function是线性还是非线性函数,不同的方法计算效率如何,要不要求逆,矩阵的维数 一般都是过约束,方程式的数目多于未知的参数数目。 最小 ...
最小二乘法的概念 最小二乘法要关心的是对应的cost function是线性还是非线性函数,不同的方法计算效率如何,要不要求逆,矩阵的维数 一般都是过约束,方程式的数目多于未知的参数数目。 最小 ...
最速下降,牛顿法:https://mp.weixin.qq.com/s?__biz=MzIxOTczOTM4NA==&mid=2247485041&idx=1&sn=9268b ...
1. 高斯牛顿法 残差函数f(x)为非线性函数,对其一阶泰勒近似有: 这里的J是残差函数f的雅可比矩阵,带入损失函数的: 令其一阶导等于0,得: 这就是论文里常看到的normal equation。 2.LM LM是对高斯牛顿法进行了改进,在求解过程中引入了阻尼因子: 2.1 ...
转载自 :《 “反向传播算法”过程及公式推导(超直观好懂的Backpropagation)》 前言 入门机器学习,阅读很多文章,都强调对于基础概念都需要好好了解。 想起当时自己刚入门深度学习的时候,当时对神经网络的“反向传播”机制不是很理解(这对理解以后的很多概念来说,很重 ...
一、反向传播的由来 在我们开始DL的研究之前,需要把ANN—人工神经元网络以及bp算法做一个简单解释。关于ANN的结构,我不再多说,网上有大量的学习资料,主要就是搞清一些名词:输入层/输入神经元,输出层/输出神经元,隐层/隐层神经元,权值,偏置,激活函数接下来我们需要知道ANN是怎么训练的,假设 ...
特性的软阴影算法。这里主要总结各种Soft Shadow Mapping的算法思想和推导过程,不提及实现 ...
一、 Levenberg-Marquardt算法 (1)y=a*e.^(-b*x)形式拟合 clear all % 计算函数f的雅克比矩阵,是解析式 syms a b y x real; f=a*exp(-b*x); Jsym=jacobian(f,[a b]); % 拟合用数据。参见 ...
LM算法全称为Levenberg-Marquard algorithm,在正式介绍该算法之前,我们需要先研读一下对该算法的发展有重要意义的几篇论文。首先,我们从LM算法的开篇之作(Levenberg于1944年发表)开始。 A method for the solution ...