决策树意义: 分类决策树模型是表示基于特征对实例进行分类的树形结构.决策树可以转换为一个if_then规则的集合,也可以看作是定义在特征空间划分上的类的条件概率分布. 它着眼于从一组无次序、无规则的 ...
Weka J C . R语言:C . C . data churn treeModel lt C . x churnTrain , , y churnTrain churn treeModel summary treeModel ruleModel lt C . churn ., data churnTrain, rules TRUE ruleModel summary ruleModel J ...
2016-10-10 18:01 2 1164 推荐指数:
决策树意义: 分类决策树模型是表示基于特征对实例进行分类的树形结构.决策树可以转换为一个if_then规则的集合,也可以看作是定义在特征空间划分上的类的条件概率分布. 它着眼于从一组无次序、无规则的 ...
ID3决策树 ID3决策树分类的根据是样本集分类前后的信息增益。 假设我们有一个样本集,里面每个样本都有自己的分类结果。 而信息熵可以理解为:“样本集中分类结果的平均不确定性”,俗称信息的 ...
参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读,方可全面了解决策树): 1.https://zhuanlan.zhihu.com/p/85731206 2.https://zhuan ...
(1)C4.5算法的特点为: 输入变量(自变量):为分类型变量或连续型变量。 输出变量(目标变量):为分类型变量。 连续变量处理:N等分离散化。 树分枝类型:多分枝。 分裂指标:信息增益比率gain ratio(分裂后的目标变量取值变异较小,纯度高) 前剪枝:叶节点数是否小于某一阈值 ...
ID3决策树优先选择信息增益大的属性来对样本进行划分,但是这样的分裂节点方法有一个很大的缺点,当一个属性可取值数目较多时,可能在这个属性对应值下的样本只有一个或者很少个,此时它的信息增益将很高,ID3会认为这个属性很适合划分,但实际情况下叫多属性的取值会使模型的泛化能力较差,所以C4.5不采用 ...
本文主要总结决策树中的ID3,C4.5和CART算法,各种算法的特点,并对比了各种算法的不同点。 决策树:是一种基本的分类和回归方法。在分类问题中,是基于特征对实例进行分类。既可以认为是if-then规则的集合,也可以认为是定义在特征空间和类空间上的条件概率分布。 决策树模型:决策树由结点 ...
决策树模型在监督学习中非常常见,可用于分类(二分类、多分类)和回归。虽然将多棵弱决策树的Bagging、Random Forest、Boosting等tree ensembel 模型更为常 ...