原文:评估分类器性能的度量,像混淆矩阵、ROC、AUC等

评估分类器性能的度量,像混淆矩阵 ROC AUC等 内容概要 模型评估的目的及一般评估流程 分类准确率的用处及其限制 混淆矩阵 confusion matrix 是如何表示一个分类器的性能 混淆矩阵中的度量是如何计算的 通过改变分类阈值来调整分类器性能 ROC曲线的用处 曲线下面积 Area Under the Curve, AUC 与分类准确率的不同 . 回顾 模型评估可以用于在不同的模型类型 ...

2016-10-09 12:01 0 4865 推荐指数:

查看详情

分类问题中的混淆矩阵ROC以及AUC评估指标

本篇博文简要讨论机器学习二分类问题中的混淆矩阵ROC以及AUC评估指标;作为评价模型的重要参考,三者在模型选择以及评估中起着指导性作用。 按照循序渐进的原则,依次讨论混淆矩阵ROCAUC: 设定一个机器学习问题情境:给定一些肿瘤患者样本,构建一个分类模型来预测肿瘤是良性还是恶性,显然这是 ...

Wed Feb 17 03:37:00 CST 2021 0 346
分类器评估方法:ROC曲线

注:本文是人工智能研究网的学习笔记 ROC是什么 二元分类器(binary classifier)的分类结果 ROC空间 最好的预测模型在左上角,代表100%的灵敏度和0%的虚警率,被称为完美分类器。 一个随机猜测模型。会给出从左下角到右上角的沿着对角线的点(对角线被称作 ...

Tue Oct 31 00:36:00 CST 2017 0 1612
机器学习之分类器性能指标之ROC曲线、AUC

分类器性能指标之ROC曲线、AUC值 一 roc曲线 1、roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性。 横轴:负正类率(false postive rate FPR)特异度,划分实例中所有负例 ...

Thu Apr 09 03:56:00 CST 2015 1 126263
分类器训练结果之混淆矩阵分析

机器学习尤其针对分类器这,有各种指标来评判最终的模型效果,以前总听说混淆矩阵,也不知道到底干啥的,反正听着就让人很混淆,后来看了网上两篇文章,自己又实践一下,基本搞明白了,我给它起了个新名字,叫“分类结果统计矩阵“,非TM拽那么高大上的名字干啥,听着都让人望而却步了,还有一些机器学习必备装B名词 ...

Tue Dec 04 01:43:00 CST 2018 0 4740
【机器学习】--模型评估指标之混淆矩阵ROC曲线和AUC面积

一、前述 怎么样对训练出来的模型进行评估是有一定指标的,本文就相关指标做一个总结。 二、具体 1、混淆矩阵 混淆矩阵如图: 第一个参数true,false是指预测的正确性。 第二个参数true,postitives是指预测的结果。 相关公式: 检测正列的效果 ...

Tue Mar 27 19:17:00 CST 2018 0 2038
机器学习 | 分类性能度量指标 : ROC曲线、AUC值、正确率、召回率

本篇博客的图源来自 zhwhong,转载仅作学习使用! 在分类任务中,人们总是喜欢基于错误率来衡量分类器任务的成功程度。错误率指的是在所有测试样例中错分的样例比例。实际上,这样的度量错误掩盖了样例如何被分错的事实。在机器学习中,有一个普遍适用的称为混淆矩阵(confusion ...

Tue Oct 26 06:29:00 CST 2021 0 305
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM