随机梯度下降 几乎所有的深度学习算法都用到了一个非常重要的算法:随机梯度下降(stochastic gradient descent,SGD) 随机梯度下降是梯度下降算法的一个扩展 机器学习中一个反复出现的问题: 好的泛化需要大的训练集,但是大的训练集的计算代价也更大 ...
梯度下降 gradient decent 梯度下降方法是我们求最优化的常用方法。常用的有批量梯度下降和随机梯度下降。 对于一个目标函数 我们目的min J , 是learningrate,表示每次向梯度负方向下降的步长,经过一次次迭代,向最优解收敛,如下图所示。 根据数据量的大小,我们可以每次使用一个样本来优化目标函数,即随机梯度下降 stochastic gradient descent ,我 ...
2016-10-02 21:25 0 2374 推荐指数:
随机梯度下降 几乎所有的深度学习算法都用到了一个非常重要的算法:随机梯度下降(stochastic gradient descent,SGD) 随机梯度下降是梯度下降算法的一个扩展 机器学习中一个反复出现的问题: 好的泛化需要大的训练集,但是大的训练集的计算代价也更大 ...
https://www.cnblogs.com/lliuye/p/9451903.html 梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent ...
梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent)。其中小批量梯度下降 ...
一.梯度下降 梯度下降就是最简单的用于神经网络当中用于更新参数的用法,计算loss的公式如下: 有了loss function之后,我们立马通过这个loss求解出梯度,并将梯度用于参数theta的更新,如下所示: 这样做之后,我们只需要遍历所有的样本,就可以得到一个 ...
知乎上看到一个直观的解释... 链接:https://www.zhihu.com/question/43673341/answer/730181826 涉及到的基础 ...
采用类的方式,参考链接 -------------------- 在更新一波,修改了梯度的部分 ------------------------- ...
线性回归 首先要明白什么是回归。回归的目的是通过几个已知数据来预测另一个数值型数据的目标值。 假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是 ...
转载:panghaomingme 批梯度下降和随机梯度下降存在着一定的差异,主要是在theta的更新上,批量梯度下降使用的是将所有的样本都一批次的引入到theta的计算中,而随机梯度下降在更新theta时只是随机选择所有样本中的一个,然后对theta求导,所以随机梯度下降具有 ...