Deep Reinforcement Learning with Double Q-learning Google DeepMind Abstract 主流的 Q-learning 算法过高的估计在特定条件下的动作值。实际上,之前是不知道是否这样的过高估计是 common ...
Dueling Network Architectures for Deep Reinforcement Learning ICML Best Paper 摘要:本文的贡献点主要是在 DQN 网络结构上,将卷积神经网络提出的特征,分为两路走,即:the state value function 和 the state dependent action advantage function. 这个 ...
2016-10-02 16:55 0 4688 推荐指数:
Deep Reinforcement Learning with Double Q-learning Google DeepMind Abstract 主流的 Q-learning 算法过高的估计在特定条件下的动作值。实际上,之前是不知道是否这样的过高估计是 common ...
Playing Atari with Deep Reinforcement Learning 《Computer Science》, 2013 Abstract: 本文提出了一种深度学习方法,利用强化学习的方法,直接从高维的感知输入中学习控制策略。模型是一个卷积神经网络 ...
Active Object Localization with Deep Reinforcement Learning ICCV 2015 最近Deep Reinforcement Learning算是火了一把,在Google Deep Mind的主页上,更是许多关于此 ...
Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很多共同的 idea:一个 online 的 agent 碰到的观察到的数据 ...
的识别效果。 这篇论文的主要思想是通过学习两个deep network来构建face attrib ...
之前提到,深度神经网络在训练中容易遇到梯度消失/爆炸的问题,这个问题产生的根源详见之前的读书笔记。在 Batch Normalization 中,我们将输入数据由激活函数的收敛区调整到梯度较大的区域,在一定程度上缓解了这种问题。不过,当网络的层数急剧增加时,BP 算法中导数的累乘效应还是很容易 ...
这篇文章的主要贡献点在于: 1.实验证明仅仅利用图像整体的弱标签很难训练出很好的分割模型; 2.可以利用bounding box来进行训练,并且得到了较好的结果,这样可以代替用pixel-leve ...
论文地址:https://arxiv.org/abs/1611.01578 1. 论文思想 强化学习,用一个RNN学一个网络参数的序列,然后将其转换成网络,然后训练,得到一个反馈,这个反馈作用于RNN网络,用于生成新的序列。 2. 整体架构 3. RNN网络 4. 具体实现 ...