一、理论准备 聚类算法,不是分类算法。分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类。聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类。 K-Means算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类 ...
引入 作为练手,不妨用matlab实现K means 要解决的问题:n个D维数据进行聚类 无监督 ,找到合适的簇心。 这里仅考虑最简单的情况,数据维度D ,预先知道簇心数目K K 理论步骤 关键步骤: 根据K个簇心 clusters,下标从 到K ,确定每个样本数据Di D为所有数据整体,Di为某个数据,i ...n 所属簇,即欧氏距离最近的那个。 簇心编号: 更新簇心:所属簇编号c i相同的样本 ...
2016-09-30 19:45 3 14146 推荐指数:
一、理论准备 聚类算法,不是分类算法。分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类。聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类。 K-Means算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类 ...
是对聚类算法中的k-means算法的实现,所以接下来主要进行一些聚类算法的介绍. 聚类算法包括 ...
人生如戏!!!! 一、理论准备 聚类算法,不是分类算法。分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类。聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类。 K-Means算法的基本思想是初始随机给定K个簇中心 ...
K-means算法很简单,它属于无监督学习算法中的聚类算法中的一种方法吧,利用欧式距离进行聚合啦。 解决的问题如图所示哈:有一堆没有标签的训练样本,并且它们可以潜在地分为K类,我们怎么把它们划分呢? 那我们就用K-means算法进行划分吧。 算法很简单,这么做就可以 ...
聚类算法,不是分类算法。 分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类。 聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类。 这里的k-means聚类,是事先给出原始数据所含的类数,然后将含有相似特征的数据聚为一个类中。 所有资料 ...
K-means算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648369.html 文章中已经介绍了K-means算法,现在用matlab程序实现它。 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com ...
聚类算法,不是分类算法。 分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类。 聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类。 这里的k-means聚类,是事先给出原始数据所含的类数,然后将含有相似特征的数据聚为一个类中 ...
1. K-Means原理解析 2. K-Means的优化 3. sklearn的K-Means的使用 4. K-Means和K-Means++实现 1. 前言 前面3篇K-Means的博文从原理、优化、使用几个方面详细的介绍了K-Means算法,本文用python语言,详细的为读者实现 ...