目录 一、线性回归 二、最小二乘法 三、最小二乘法(向量表示) 四、Python实现 一、线性回归 给定由n个属性描述的样本x=(x0, x1, x2, ... , xn),线性模型尝试学习一个合适的样本属性的线性组合来进行预测任务,如:f(x ...
上篇文章介绍了最小二乘法的理论与证明 计算过程,这里给出两个最小二乘法的计算程序代码 Octave代码 clear all close all 拟合的数据集 x y 数据长度 N length x 计算x平均值 m x sum x N 计算t的平均值 m t sum y N 计算t x的平均值 m xt sum y. x N 计算x平方的平均值 m xx sum x. x N 运行结果 文章首发地 ...
2016-09-24 15:51 0 2610 推荐指数:
目录 一、线性回归 二、最小二乘法 三、最小二乘法(向量表示) 四、Python实现 一、线性回归 给定由n个属性描述的样本x=(x0, x1, x2, ... , xn),线性模型尝试学习一个合适的样本属性的线性组合来进行预测任务,如:f(x ...
线性回归:是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。 梯度下降,http://www.cnblogs.com/hgl0417/p/5893930.html 最小二乘: 对于一般训练集 ...
线性回归之最小二乘法 1.最小二乘法的原理 最小二乘法的主要思想是通过确定未知参数\(\theta\)(通常是一个参数矩阵),来使得真实值和预测值的误差(也称残差)平方和最小,其计算公式为\(E=\sum_{i=0}^ne_i^2=\sum_{i=1}^n(y_i-\hat{y_i ...
回归: 所以从这里我们开始将介绍线性回归的另一种更方便求解多变量线性回归的方式:最小二乘法矩阵形 ...
相信学过数理统计的都学过线性回归(linear regression),本篇文章详细将讲解单变量线性回归并写出使用最小二乘法(least squares method)来求线性回归损失函数最优解的完整过程,首先推导出最小二乘法,后用最小二乘法对一个简单数据集进行线性回归拟合; 线性回归 ...
个人记录,大部分摘自概率论与数理统计 一元线性回归模型 设y与x间有相关关系,称x为自变量,y为因变量,我们只考虑在x是可控变量,只有y是随机变量,那么他们之间的相关关系可以表示为 y=f(x)+ε 其中ε是随机误差,一般假设ε~N(0,σ2)。由于ε是随机变量,导致y也是随机变量 ...
下面展示利用Python实现基于最小二乘法的线性回归模型,同时不需要引入其他科学计算以及机器学习的库。 利用Python代码表示如下: #首先引入数据集x,和y的值的大小利用Python的数据结构:列表,来实现。 y ...
2019/3/30 二元线性回归——矩阵公式法又名:对于python科学库的糟心尝试 二元线性回归严格意义上其实不过是换汤不换药,我对公式进行推导,其实也就是跟以前一样的求偏导并使之为零,并且最终公式的严格推导我大概也只能说是将将理解,毕竟最初的矩阵一开始都不太清楚应该是什么样子 ...