ID3算法是一种贪心算法,用来构造决策树。ID3算法起源于概念学习系统(CLS),以信息熵的下降速度为选取测试属性的标准,即在每个节点选取还尚未被用来划分的具有最高信息增益的属性作为划分标准,然后继续这个过程,直到生成的决策树能完美分类训练样例。 ①对当前样本集合,计算所有属性的信息增益 ...
再看 MATLAB数据分析与挖掘实战 ,简单总结下今天看到的经典的决策树算法 ID . ID :在决策树的各级节点上,使用信息增益的方法作为属性的选择标准,来帮助确定生成每个节点时所应采取的合适属性。 关于信息增益,知乎上这个回答也讲的很不错。信息增益 熵 条件熵,信息增益越大,说明该条件对事件确定性的影响越大。所以,在决策树中,我们将信息增益值作为测试属性。把测试属性取值相同的样本划为同一个子 ...
2016-09-18 00:44 0 2042 推荐指数:
ID3算法是一种贪心算法,用来构造决策树。ID3算法起源于概念学习系统(CLS),以信息熵的下降速度为选取测试属性的标准,即在每个节点选取还尚未被用来划分的具有最高信息增益的属性作为划分标准,然后继续这个过程,直到生成的决策树能完美分类训练样例。 ①对当前样本集合,计算所有属性的信息增益 ...
1)决策树之ID3 决策树算法是分类算法的一种,基础是ID3算法,C4.5、C5.0都是对ID3的改进。ID3算法的基本思想是,选择信息增益最大的属性作为当前的分类属性。 看Tom M. Mitchell老师的《Machine Learing》第三章中的例子: 我们先解释一下这张 ...
本文将详细介绍ID3算法,其也是最经典的决策树分类算法。 1、ID3算法简介及基本原理 ID3算法基于信息熵来选择最佳的测试属性,它选择当前样本集中具有最大信息增益值的属性作为测试属性;样本集的划分则依据测试属性的取值进行,测试属性有多少个不同的取值就将样本集划分为多少个子样本集,同时决策树 ...
1、决策树原理 1.1、定义 分类决策树模型是一种描述对实例进行分类的树形结构。决策树由结点和有向边组成。结点有两种类型:内部节点和叶节点,内部节点表示一个特征或属性,叶节点表示一个类。 举一个 ...
Python实现ID3(信息增益) 运行环境 Pyhton3 treePlotter模块(画图所需,不画图可不必) matplotlib(如果使用上面的模块必须) 计算过程 输入样例 代码实现 输出样例 附加文件 treePlotter.py ...
已知:流感训练数据集,预定义两个类别; 求:用ID3算法建立流感的属性描述决策树 流感训练数据集 No. 头痛 肌肉痛 体温 患流感 ...
一、决策树概论 决策树是根据训练数据集,按属性跟类型,构建一棵树形结构。可以按照这棵树的结构,对测试数据进行分类。同时决策树也可以用来处理预测问题(回归)。 二、决策树ID3的原理 有多种类型的决策树,本文介绍的是ID3算法。 首先按照“信息增益”找出最有判别力的属性,把这个属性 ...
本代码来源自:https://github.com/Erikfather/Decision_tree-python 1.数据集描述 共分为四个属性特征:年龄段,有工作,有自己的房子,信贷情况; ...