PCA(Principal Components Analysis)主成分分析是一个简单的机器学习算法,利用正交变换把由线性相关变量表示的观测数据转换为由少量线性无关比变量表示的数据,实现降维的同时尽量减少精度的损失,线性无关的变量称为主成分。大致流程如下: 首先对给定数据集(数据是向量 ...
来源:http: blog.travel.ifeng.com article .html 主成分分析的经典图像如下 直观的解释就是,在长箭头方向上,数据点要比短箭头方向上分散。如果用长箭头的方向来区分样本点,基本上就能代表长短两个方向。那么我们就可以用长箭头作为分类 回归或者聚类的标准。上面例子中,维度从 长短两个箭头 降到了 长箭头 。 这里边箭头长短就是数据点在这个分量上的方差,设想一个数据点 ...
2016-09-01 17:16 0 4629 推荐指数:
PCA(Principal Components Analysis)主成分分析是一个简单的机器学习算法,利用正交变换把由线性相关变量表示的观测数据转换为由少量线性无关比变量表示的数据,实现降维的同时尽量减少精度的损失,线性无关的变量称为主成分。大致流程如下: 首先对给定数据集(数据是向量 ...
基本概念 主成分分析(Principal Component Analysis, PCA)是研究如何将多指标问题转化为较少的综合指标的一种重要的统计方法,它能将高维空间的问题转化到低维空间去处理,使问题变得比较简单、直观,而且这些较少的综合指标之间互不相关,又能提供原有指标的绝大部分 ...
一.定义 主成分分析(principal components analysis)是一种无监督的降维算法,一般在应用其他算法前使用,广泛应用于数据预处理中。其在保证损失少量信息的前提下,把多个指标转化为几个综合指标的多元统计方法。这样可达到简化数据结构,提高分信息效率的目的。 通常 ...
主成分分析-PCA 1. 数据的降维 高维数据 除了图片、文本数据,我们在实际工作中也会面临更多高维的数据。比如在评分卡模型构建过程中,我们通常会试着衍生出很多的特征,最后就得到上千维、甚至上万维特征; 在广告点击率预测应用中,拥有几个 亿特征也是常见的事情; 在脑科学 ...
先回顾下主成分分析方法。PCA的最大方差推导的结论是,把数据投影到特征向量的方向后,方差具有极大值的。假如先把数据映射到一个新的特征空间,再做PCA会怎样?对于一些数据,方差会更好地保留下来。而核方法就是提供了一些映射到新的特征空间的选择。 假设这个映射为$\phi(x_{i})$, 数据 ...
PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理。这篇 ...
相对与网上很多人分享的有关PCA的经历,我第一次接触PCA却不是从人脸表情识别开始的,但我所在的实验室方向之一是人脸的研究,最后也会回到这个方向上来吧。 PCA(principal components analysis)是一种非常有用的统计技术,它已经应用于人脸识别和图像压缩领域中,并且是高维 ...
参考:https://mp.weixin.qq.com/s/6xsXjUEUm8dB5y6-dInT_w PCA的数学原理无非一句话: 协方差矩阵的特征值分解 (或者等价地) 原矩阵的奇异值分解 1、PCA:通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据 ...