原文:条件随机场入门(四) 条件随机场的训练

本节讨论给定训练数据集估计条件随机场模型参数的问题,即条件随机场的学习问题。条件随机场模型实际上是定义在时序数据上的对数线形模型,其学习方法包括极大似然估计和正则化的极大似然估计。具体的优化实现算法有改进的迭代尺度法IIS 梯度下降法以及 L BFGS 算法。 crf 采用了 L BFGS 优化的方式,所以着重看这种训练方法即可 L BFGS算法 对于条件随机场模型: P w y x frac e ...

2016-08-31 17:08 0 6666 推荐指数:

查看详情

条件随机场入门(二) 条件随机场的模型表示

linear-chain 条件随机场 条件随机场(conditional random field)是给定随机变量 X 条件下,随机变量 Y 的马尔可夫随机场。本文主要介绍定义在线性链上的特殊的条件随机场,称为线性链条件随机场(linear-chain CRF)。线性链条件随机场可以用于机器学习 ...

Mon Aug 29 23:38:00 CST 2016 0 12132
条件随机场入门(五) 条件随机场的预测算法

CRF 的预测问题是给定模型参数和输入序列(观测序列)x, 求条件概率最大的输出序列(标记序列)$y^*$,即对观测序列进行标注。条件随机场的预测算法同 HMM 还是维特比算法,根据 CRF模型可得: \begin{aligned}y^* &= \arg \max_yP_w(y|x ...

Thu Sep 01 02:18:00 CST 2016 1 4160
条件随机场入门(三) 条件随机场的概率计算问题

条件随机场的概率计算问题是给定条件随机场 P(Y|X) ,输入序列 x 和输出序列 y ,计算条件概率 $P(Y_{i-1} = y_{i-1}Y_i = y_i|x)$ ,$P(Y_i = y_i|x)$ 以及相应的数学期望的问题。为了方便起见,像 HMM 那样,引进前向-后向向量,递归 ...

Wed Aug 31 04:07:00 CST 2016 0 3758
条件随机场

1、随机场(RF) 在概率论中,由样本空间Ω任意取样构成的随机变量X_i的集合S = {X_1,X_2, ..., X_n},对所有的ω∈Ω式子π(ω) > 0均成立,则称π为一个随机场。 2、马尔可夫随机场(MRF) 当随机变量具有依赖关系时,我们研究随机场才有 ...

Sun Mar 17 00:30:00 CST 2013 1 3259
条件随机场

(一)马尔可夫随机场(Markov random field,无向图模型) (二)条件随机场(Conditional random field,CRF) (一)马尔可夫随机场 概率图模型(Probabilistic graphical model,PGM)是由图表 ...

Tue Aug 27 05:34:00 CST 2019 0 427
条件随机场

马尔可夫随机场 概率图模型是由图表示的概率分布。概率无向图模型又称马尔可夫随机场(Markov random field),表示一个联合概率分布,其标准定义为: 设有联合概率分布\(P(V)\)由无向图\(G=(V, E)\)表示,图\(G\)中的节点表示随机变量,边表示随机变量间的依赖关系 ...

Mon Nov 25 06:47:00 CST 2019 0 443
CRF条件随机场

CRF的进化 https://flystarhe.github.io/2016/07/13/hmm-memm-crf/参考: http://blog.echen.me/2012/01/03/int ...

Tue Jul 18 02:39:00 CST 2017 0 10874
条件随机场-应用

  今天介绍CRFs在中文分词中的应用   工具:CRF++,可以去 https://taku910.github.io/crfpp/ 下载,训练数据和测试数据可以考虑使用bakeoff2005,这是链接 http://sighan.cs.uchicago.edu/bakeoff2005 ...

Mon Jul 24 05:05:00 CST 2017 0 1763
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM