原文:【CV知识学习】神经网络梯度与归一化问题总结+highway network、ResNet的思考

这是一篇水货写的笔记,希望路过的大牛可以指出其中的错误,带蒟蒻飞啊 一 梯度消失 梯度爆炸的问题 首先来说说梯度消失问题产生的原因吧,虽然是已经被各大牛说烂的东西。不如先看一个简单的网络结构, 可以看到,如果输出层的值仅是输入层的值与权值矩阵W的线性组合,那么最终网络最终的输出会变成输入数据的线性组合。这样很明显没有办法模拟出非线性的情况。记得神经网络是可以拟合任意函数的。好了,既然需要非线性函数 ...

2016-08-25 22:19 1 16443 推荐指数:

查看详情

神经网络为什么要归一化

神经网络为什么要归一化 1.数值问题。 无容置疑,归一化的确可以避免一些不必要的数值问题。输入变量的数量级未致于会引起数值问题吧,但其实要引起也并不是那么困难。因为tansig的非线性区间大约在[-1.7,1.7]。意味着要使神经元有效,tansig( w1*x1 ...

Thu Nov 23 03:45:00 CST 2017 1 13032
关于神经网络(matlab)归一化的整理

关于神经网络归一化方法的整理由于采集的各数据单位不一致,因而须对数据进行[-1,1]归一化处理,归一化方法主要有如下几种,供大家参考:(by james)1、线性函数转换,表达式如下:y=(x-MinValue)/(MaxValue-MinValue)说明:x、y分别为转换前、后的值 ...

Wed Apr 01 01:16:00 CST 2015 0 5375
神经网络与深度学习(5):梯度消失问题

本文总结自《Neural Networks and Deep Learning》第5章的内容。 问题引入 随着隐藏层数目的增加,分类准确率反而下降了。为什么? 消失的梯度问题(The vanishing gradient problem) 先看一组试验数据,当神经网络在训练 ...

Mon Dec 26 06:59:00 CST 2016 0 18242
神经网络和深度学习】笔记 - 第五章 深度神经网络学习过程中的梯度消失问题

文章导读: 1. 梯度消失问题 2. 是什么导致了梯度消失问题? 3. 复杂神经网络中的梯度不稳定问题 之前的章节,我们利用一个仅包含一层隐藏层的简单神经网络就在MNIST识别问题上获得了98%左右的准确率。我们于是本能会想到用更多的隐藏层,构建更复杂的神经网络将会为我们带来更好 ...

Thu Sep 14 20:22:00 CST 2017 1 3787
卷积神经网络ResNet网络模型学习

卷积神经网络ResNet网络模型学习 参考文章网址:https://www.cnblogs.com/vincentqliu/p/7464918.html Deep Residual Learning for Image Recognition 微软亚洲研究院的何凯 ...

Sat Mar 02 00:02:00 CST 2019 0 726
卷积神经网络ResNet网络模型学习

Deep Residual Learning for Image Recognition 微软亚洲研究院的何凯明等人 论文地址 https://arxiv.org/pdf/1512.03385v1.pdf Abstract 更深层次的神经网络训练更加困难。我们提出一个 ...

Sat Sep 02 04:12:00 CST 2017 0 11428
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM