最大熵模型是指在满足约束条件的模型集合中选取熵最大的模型,即不确定性最大的模型。 最大熵原理 最大熵思想:当你要猜一个概率分布时,如果你对这个分布一无所知,那就猜熵最大的均匀分布,如果你对这个分布知道一些情况,那么,就猜满足这些情况的熵最大的分布。 算法推导 按照最大熵原理,我们应该 ...
同样是使用NLTK来实现,NLTK的安装之前博文有说过在此不再赘述。 http: www.cnblogs.com mansiisnam p .html 之前在网上找了很多实现最大熵 LBFGS的资料,也看了大牛自己写代码实现出来的博客。但是本人的基础薄弱难以对大牛的代码进行修改以达到自己的预期,所以就想着使用工具包实现。windows 使用NLTK的MEGAM比较麻烦,博主之前找了很多资料没有实现 ...
2016-08-23 17:17 1 1463 推荐指数:
最大熵模型是指在满足约束条件的模型集合中选取熵最大的模型,即不确定性最大的模型。 最大熵原理 最大熵思想:当你要猜一个概率分布时,如果你对这个分布一无所知,那就猜熵最大的均匀分布,如果你对这个分布知道一些情况,那么,就猜满足这些情况的熵最大的分布。 算法推导 按照最大熵原理,我们应该 ...
1. 前言 最大熵模型(maximum entropy model, MaxEnt)也是很典型的分类算法了,它和逻辑回归类似,都是属于对数线性分类模型。在损失函数优化的过程中,使用了和支持向量机类似的凸优化技术。而对熵的使用,让我们想起了决策树算法中的ID3和C4.5算法。理解了最大熵模型 ...
最大熵模型预备知识 信息量:一个事件发生的概率越小,信息量越大,所以信息量应该为概率的减函数,对于相互独立的两个事有p(xy)=p(x)p(y),对于这两个事件信息量应满足h(xy)=h(x)+h(y),那么信息量应为对数函数: 对于一个随机变量可以以不同的概率发生 ...
1、似然函数 概率和似然的区别:概率是已知参数的条件下预测未知事情发生的概率,而似然性是已知事情发生的前提下估计模型的参数。我们通常都是将似然函数取最大值时的参数作为模型的参数。 那么为何要取似然函数取最大值的参数作为模型的参数?我们基于这样的假设:对于已经发生的事情,在同样 ...
一、概述 在日常生活中或者科学试验中,很多的事情发生都具有一定的随机性,即最终产生的结果是随机发生的,我们不清楚这些结果是否服从什么规律,我们所拥有的只有一些实验样本,在这种情况下,我们如何根据现拥有的东西对结果产生一个合理的推断呢?最大熵方法就是解决这种问题的一个方法。 最大熵原理 ...
Overview 统计建模方法是用来modeling随机过程行为的。在构造模型时,通常供我们使用的是随机过程的采样,也就是训练数据。这些样本所具有的知识(较少),事实上,不能完整地反映整个随 ...
把各种熵的好文集中一下,希望面试少受点伤,哈哈哈 1. 条件熵 https://zhuanlan.zhihu.com/p/26551798 我们首先知道信息熵是考虑该随机变量的所有可能取值,即所有可能发生事件所带来的信息量的期望。公式如下: 我们的条件熵的定义是:定义为X给定条件下,Y ...
逻辑回归 sigmoid函数=\(\sigma(x)=\frac{1}{1+e^{-x}}=\frac{e^{x}}{1+e^{x}}\) 二项逻辑回归模型 有如下条件概率分布,\(w\)内已经 ...