Two-Stream Convolutional Networks for Action Recognition in Videos & Towards Good Practices for Very Deep Two-Stream ConvNets Note here ...
论文的三个贡献 提出了two stream结构的CNN,由空间和时间两个维度的网络组成。 使用多帧的密集光流场作为训练输入,可以提取动作的信息。 利用了多任务训练的方法把两个数据集联合起来。 Two stream结构 视屏可以分成空间与时间两个部分,空间部分指独立帧的表面信息,关于物体 场景等 而时间部分信息指帧间的光流,携带着帧之间的运动信息。相应的,所提出的网络结构由两个深度网络组成,分别处理 ...
2016-08-07 09:01 0 9206 推荐指数:
Two-Stream Convolutional Networks for Action Recognition in Videos & Towards Good Practices for Very Deep Two-Stream ConvNets Note here ...
论文的重点在于后面approximation部分。 在《Rank Pooling》的论文中提到,可以通过训练RankSVM获得参数向量d,来作为视频帧序列的representation。而在dynamic论文中发现,这样的参数向量d,事实上与image是同等大小的,也就是说,它本身是一张 ...
这是期刊论文的版本,不是会议论文的版本。看了论文之后,只能说,太TM聪明了。膜拜~~ 视频的表示方法有很多,一般是把它看作帧的序列。论文提出一种新的方法去表示视频,用ranking function的参数编码视频的帧序列。它使用一个排序函数(ranking function)主要 ...
Two-Stream Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition 摘要 基于骨架的动作识别因为其以时空结合图(spatiotemporal graph)的形式模拟了人体骨骼而取得了显著 ...
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 2018-01-28 15:45:13 研究背景和动机: 行人动作识别(Human Action ...
https://blog.csdn.net/qq_21949357/article/details/80538255 这篇论文其实读起来还是比较难懂的,主要是细节部分很需要推敲,尤其是deformable的卷积如何实现的一步上,在写这篇博客之前,我也查阅了很多其他人的分享或者去github找代码 ...
首先,容我吐槽一下这篇论文的行文结构、图文匹配程度、真把我搞得晕头转向,好些点全靠我猜测推理作者想干嘛,😈 背景 我们知道传统的CNN针对的是image,是欧氏空间square grid,那么使用同样square grid的卷积核就能对输入的图片进行特征的提取。在上一篇论文中,使用的理论 ...
DCNN 主要思想: 这是一篇基于空间域的图神经网络,聚合方式通过采样(hop)1~k 阶的邻居并同 self 使用 mean 的方式得到新的 feature-vector 作者将不同的 ...