基本概念及定理1. 欧拉通路、欧拉回路、欧拉图无向图:1) 设G是连通无向图,则称经过G的每条边一次并且仅一次的路径为欧拉通路;2) 如果欧拉通路是回路(起点和终点是同一个顶点),则称此回路为欧拉回路(Euler circuit);3) 具有欧拉回路的无向图G称为欧拉图(Euler graph ...
原题 可惜不会 真是一只大蒟蒻 有一天一位灵魂画师画了一张图,现在要你找出欧拉回路,即在图中找一个环使得每条边都在环上出现恰好一次。 一共两个子任务: 这张图是无向图。 分 这张图是有向图。 分 输入格式 第一行一个整数t tt,表示子任务编号。t amp x , t , t , ,如果t t t 则表示处理无向图的情况,如果t t t 则表示处理有向图的情况。 第二行两个整数n,m n,mn,m ...
2016-08-08 17:04 0 2249 推荐指数:
基本概念及定理1. 欧拉通路、欧拉回路、欧拉图无向图:1) 设G是连通无向图,则称经过G的每条边一次并且仅一次的路径为欧拉通路;2) 如果欧拉通路是回路(起点和终点是同一个顶点),则称此回路为欧拉回路(Euler circuit);3) 具有欧拉回路的无向图G称为欧拉图(Euler graph ...
欧拉回路:图G,若存在一条路,经过G中每条边有且仅有一次,称这条路为欧拉路,如果存在一条回路经过G每条边有且仅有一次, 称这条回路为欧拉回路。具有欧拉回路的图成为欧拉图。 判断欧拉路是否存在的方法 有向图:图连通,有一个顶点出度大入度1,有一个顶点入度大出度1,其余都是出度=入度。 无向图 ...
看到“每条路只能走一次”,“所有的路”,这样类似的字眼,就要想到欧拉路 看是无向边 还是 ...
一.欧拉回路的判定 主要分为两大类 无向图欧拉回路判定: 1、欧拉路径:即可以一笔画,充要条件是度数为奇数的点的个数为0或2。 2、欧拉回路:欧拉路径构成一个圈,充要条件是全部是偶点 有向图欧拉回路判定 1、欧拉路径:起点出度比入度大1,终点入度比出度大1,其他点全部是偶点 ...
概念: 欧拉回路: 一笔画, 起点等于终点. 欧拉路径: 一笔画, 起点可以不等于终点.(条件更加宽松). 欧拉图: 存在欧拉回路的图. 半欧拉图: 仅存在欧拉路径的图. 找欧拉回路 存在的充要条件 A.判断欧拉通路是否存在的方法 ...
概念 欧拉路径:图&G&中的一条路径若包括每个边恰好一次,则其为欧拉路径 欧拉回路:一条回路如果是欧拉路径,那么其为欧拉回路 存在条件 无论无向图还是有向图,首要条件为所有边都是连通的 无向图 存在欧拉路径的充要条件:度数为奇数的点只能 ...
咕了好久的图论的一小小小部分。 1、定义 欧拉路径 :不重复经过图上每一条边的路径 欧拉回路 : 起止点相同的欧拉路径 2、判定 $\bullet$ 有向图: $\bullet$ 欧拉路径 :图中有且仅有 $1$ 个点出度比入度多 $1$ ,为起点;图中有且仅有 $1$ 个点 ...
之前稍微了解有向图、无向图、混合图的欧拉通路、欧拉回路,这里做下笔记,以便日后翻阅。 无向图: 存在欧拉回路的条件:原图连通,每个结点均为偶度结点。 存在欧拉通路的条件:存在欧拉回路,或原图连通,有两个结点为奇度结点,其他结点均为偶度结点。 有向图: 存在欧拉回路的条件 ...