Python 文本相似度和聚类 文本数据是非结构化的和高噪声的。在执行文本分类时,拥有标记合理的训练数据和有监督学习大有裨益。但是,文档聚类是一个无监督的学习过程,将尝试通过让机器学习各种各样的文本文档及其特征、相似度以及它们之间的差异,来讲文本 文档分割和分类为单独的类别。这使得文档聚类更具 ...
catalogue . TF IDF Relevant Link: . 基于空间向量的余弦算法 . 最长公共子序列该算法的最大缺陷是计算CPU消耗较大 为进一步提升该算法,我们可以将字符相同节点的值加上左上角 d i ,j 的值,这样即可获得最大公共子串的长度。如此一来只需以行号和最大值为条件即可截取最大子串 Relevant Link: . 最小编辑距离算法 设A B为两个字符串,狭义的编辑距离 ...
2016-08-05 14:12 0 6621 推荐指数:
Python 文本相似度和聚类 文本数据是非结构化的和高噪声的。在执行文本分类时,拥有标记合理的训练数据和有监督学习大有裨益。但是,文档聚类是一个无监督的学习过程,将尝试通过让机器学习各种各样的文本文档及其特征、相似度以及它们之间的差异,来讲文本 文档分割和分类为单独的类别。这使得文档聚类更具 ...
文本相似度算法 1.信息检索中的重要发明TF-IDF 1.1TF Term frequency即关键词词频,是指一篇文章中关键词出现的频率,比如在一篇M个词的文章中有N个该关键词,则 (公式1.1-1) 为该关键词在这篇文章中的词频。 1.2IDF Inverse document ...
在工作中一直使用余弦相似度算法计算两段文本的相似度和两个用户的相似度。一直弄不明白多维的余弦相似度公式是怎么推导来的。今天终于花费时间把公式推导出来,其实很简单,都是高中学过的知识,只是很多年没用了,都还给老师了。本文还通过一个例子演示如果使用余弦相似度计算两段文本的相似度。 余弦函数 ...
转载请注明出处: http://blog.csdn.net/u013074302/article/details/76422551 导语 在NLP领域,语义相似度的计算一直是个难题:搜索场景下query和Doc的语义相似度、feeds场景下Doc和Doc的语义相似度、机器翻译场景下 ...
0 引言 在自然语言处理任务中,我们经常需要判断两篇文档是否相似、计算两篇文档的相似程度。比如,基于聚类算法发现微博热点话题时,我们需要度量各篇文本的内容相似度,然后让内容足够相似的微博聚成一个簇;在问答系统中,我们会准备一些经典问题和对应的答案,当用户的问题和经典问题很相似时,系统直接返回 ...
BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms app ...
背景 最近做一个爬虫相关的项目,需要排除掉一些相似的链接,比如分页控件里上一页,下一页等等没什么用的链接. 编辑距离算法 编辑距离,又称Levenshtein距离(莱文斯坦距离也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数,如果它们的距离越大 ...
参考: 文本比较算法Ⅰ——LD算法 文本比较算法Ⅱ——Needleman/Wunsch算法 文本比较算法Ⅲ——计算文本的相似度 文本比较算法Ⅳ——Nakatsu算法 目录: 问题 LD算法 Needleman/Wunsch算法 Nakatsu算法 ...