简介:最近在看逻辑回归算法,在算法构建模型的过程中需要对参数进行求解,采用的方法有梯度下降法和无约束项优化算法。之前对无约束项优化算法并不是很了解,于是在学习逻辑回归之前,先对无约束项优化算法中经典的算法学习了一下。下面将无约束项优化算法的细节进行描述。为了尊重别人的劳动成果,本文的出处 ...
本文讲解的是无约束优化中几个常见的基于梯度的方法,主要有梯度下降与牛顿方法 BFGS 与 L BFGS 算法。 梯度下降法是基于目标函数梯度的,算法的收敛速度是线性的,并且当问题是病态时或者问题规模较大时,收敛速度尤其慢 几乎不适用 牛顿法是基于目标函数的二阶导数 Hesse 矩阵 的,其收敛速度较快,迭代次数较少,尤其是在最优值附近时,收敛速度是二次的。但牛顿法的问题在于当海森矩阵稠密时,每次迭 ...
2016-08-02 17:04 1 5267 推荐指数:
简介:最近在看逻辑回归算法,在算法构建模型的过程中需要对参数进行求解,采用的方法有梯度下降法和无约束项优化算法。之前对无约束项优化算法并不是很了解,于是在学习逻辑回归之前,先对无约束项优化算法中经典的算法学习了一下。下面将无约束项优化算法的细节进行描述。为了尊重别人的劳动成果,本文的出处 ...
一、BFGS算法 在“优化算法——拟牛顿法之BFGS算法”中,我们得到了BFGS算法的校正公式: 利用Sherman-Morrison公式可对上式进行变换,得到 令,则得到: 二、BGFS算法存在的问题 在BFGS算法中。每次都要 ...
牛顿法 考虑如下无约束极小化问题: $$\min_{x} f(x)$$ 其中$x\in R^N$,并且假设$f(x)$为凸函数,二阶可微。当前点记为$x_k$,最优点记为$x^*$。 梯度下降法用的是一阶偏导,牛顿法用二阶偏导。以标量为例,在当前点进行泰勒二阶展开: $$\varphi ...
数据、特征和数值优化算法是机器学习的核心,而牛顿法及其改良(拟牛顿法)是机器最常用的一类数字优化算法,今天就从牛顿法开始,介绍几个拟牛顿法算法。本博文只介绍算法的思想,具体的数学推导过程不做介绍。 1. 牛顿法 牛顿法的核心思想是”利用函数在当前点的一阶导数,以及二阶导数,寻找搜寻方向“(回想 ...
欢迎转载,转载请注明出处,徽沪一郎。 概要 本文就拟牛顿法L-BFGS的由来做一个简要的回顾,然后就其在spark mllib中的实现进行源码走读。 拟牛顿法 数学原理 代码实现 L-BFGS算法中使用到的正则化方法 ...
1、二分法(一阶导) 二分法是利用目标函数的一阶导数来连续压缩区间的方法,因此这里除了要求 f 在 [a0,b0] 为单峰函数外,还要去 f(x) 连续可微。 (1)确定初始区间的中点 x(0)=(a0+b0)/2 。然后计算 f(x) 在 x(0) 处的一阶导数 f'(x ...
一、牛顿法 对于优化函数\(f(x)\),在\(x_0\)处泰勒展开, \[f(x)=f(x_0)+f^{'}(x_0)(x-x_0)+o(\Delta x) \] 去其线性部分,忽略高阶无穷小,令\(f(x) = 0\)得: \[x=x_0-\frac{f(x_0)}{f ...
L-BFGS算法比较适合在大规模的数值计算中,具备牛顿法收敛速度快的特点,但不需要牛顿法那样存储Hesse矩阵,因此节省了大量的空间以及计算资源。本文主要通过对于无约束最优化问题的一些常用算法总结,一步步的理解L-BFGS算法,本文按照最速下降法 - 牛顿法 - 共轭梯度法 - 拟牛顿法 ...