分层贝叶斯模型 对于一个随机变量序列$Y_{1},...,Y_{n} $,如果在任意排列顺序$\pi $下,其概率密度都满足$p(y_{1},...,y_{n})=p(y_{\pi_{1}},...,y_{\pi_{n}}) $,那么称这些变量是可交换的。当我们缺乏区分这些随机变量的信息时 ...
One Shot Learning with a Hierarchical Nonparametric Bayesian Model 该篇文章通过分层贝叶斯模型学习利用单一训练样本来学习完成分类任务,模型通过影响一个类别的均值和方差,可以将已经学到的类别信息用到新的类别当中。模型能够发现如何组合一组类别,将其归属为一个有意义的父类。对一个对象进行分类需要知道在一个合适的特征空间中每一维度的均值和方 ...
2016-07-13 20:31 0 1822 推荐指数:
分层贝叶斯模型 对于一个随机变量序列$Y_{1},...,Y_{n} $,如果在任意排列顺序$\pi $下,其概率密度都满足$p(y_{1},...,y_{n})=p(y_{\pi_{1}},...,y_{\pi_{n}}) $,那么称这些变量是可交换的。当我们缺乏区分这些随机变量的信息时 ...
1. 蒙特卡洛估计 若$\theta$是要估计的参数,$y_{1},...,y_{n}$是从分布$p(y_{1},...,y_{n}|\theta) $中采样的样本值,假定我们从后验分布$p( ...
频率推理(Frequentist inference is a type of statistical inference that draws conclusions from sample dat ...
采用加一个正规项和交叉验证的方式处理过拟合问题。与此相对的贝叶斯学派用贝叶斯的方法给出一种自然的方法进行 ...
(学习这部分内容大约需要1.1小时) 摘要 在模型选择中, 我们通常从一组候选模型中选择一个"最优"的模型(基于某种模型评价准则, 比如AIC分数). 然后, 使用这个选定的"最优"模型进行预测. 与这种选择单一最优模型不同的是, 贝叶斯模型平均给每个模型赋予权重, 并进行加权平均确定最终 ...
1.使用朴素贝叶斯模型对iris数据集进行花分类 #高斯分布型 from sklearn.datasets import load_iris iris = load_iris() from sklearn.naive_bayes import GaussianNB gnb ...
朴素贝叶斯中的基本假设 训练数据是由$P\left( {X,Y} \right)$独立同分布产生的 条件独立假设(当类别确定时特征之间是相互独立的):\[P\left( {X = x|Y = {c_k}} \right) = P\left( {{X^{\left( 1 \right ...