1. 蒙特卡洛估计 若$\theta$是要估计的参数,$y_{1},...,y_{n}$是从分布$p(y_{1},...,y_{n}|\theta) $中采样的样本值,假定我们从后验分布$p( ...
分层贝叶斯模型 对于一个随机变量序列 Y ,...,Y n ,如果在任意排列顺序 pi 下,其概率密度都满足 p y ,...,y n p y pi ,...,y pi n ,那么称这些变量是可交换的。当我们缺乏区分这些随机变量的信息时,可交换性是 p y ,...,y n 的一个合理属性。在这种情况下,各个随机变量可以看作是从一个群体中独立采样的结果,群体的属性可以用一个固定的未知参数 phi ...
2016-07-13 18:53 0 2063 推荐指数:
1. 蒙特卡洛估计 若$\theta$是要估计的参数,$y_{1},...,y_{n}$是从分布$p(y_{1},...,y_{n}|\theta) $中采样的样本值,假定我们从后验分布$p( ...
One-Shot Learning with a Hierarchical Nonparametric Bayesian Model 该篇文章通过分层贝叶斯模型学习利用单一训练样本来学习完成分类任务,模型通过影响一个类别的均值和方差,可以将已经学到的类别信息用到新的类别当中。模型能够发现如何组合 ...
频率推理(Frequentist inference is a type of statistical inference that draws conclusions from sample dat ...
采用加一个正规项和交叉验证的方式处理过拟合问题。与此相对的贝叶斯学派用贝叶斯的方法给出一种自然的方法进行 ...
(学习这部分内容大约需要1.1小时) 摘要 在模型选择中, 我们通常从一组候选模型中选择一个"最优"的模型(基于某种模型评价准则, 比如AIC分数). 然后, 使用这个选定的"最优"模型进行预测. 与这种选择单一最优模型不同的是, 贝叶斯模型平均给每个模型赋予权重, 并进行加权平均确定最终 ...
朴素贝叶斯中的基本假设 训练数据是由$P\left( {X,Y} \right)$独立同分布产生的 条件独立假设(当类别确定时特征之间是相互独立的):\[P\left( {X = x|Y = {c_k}} \right) = P\left( {{X^{\left( 1 \right ...
我理解的朴素贝叶斯模型 我想说:“任何事件都是条件概率。”为什么呢?因为我认为,任何事件的发生都不是完全偶然的,它都会以其他事件的发生为基础。换句话说,条件概率就是在其他事件发生的基础上,某事件发生的概率。 条件概率是朴素贝叶斯模型的基础。 假设,你的xx公司正在面临着用户流失的压力 ...
看这个模型很久了,可能一直深入的不够,现把自己的一点愚见不断的贴上来,一起交流,共同进步。 贝叶斯非参数模型是一种定义在无限维参数空间上的贝叶斯模型。其大概的意思是说非参数模型的大小可以随着模型内数据的增大或减小而自适应模型的变化,可以根据数据的多少选择参数来确定模型(这一定义的直观解释参考 ...