借鉴前人的文章链接 http://blog.csdn.net/zouxy09/article/details/8777094 http://www.gene-seq.com/bbs/thread- ...
参考前人的链接 http: blog.csdn.net zouxy article details Deep Learning的常用模型或者方法 AutoEncoder自动编码器 Deep Learning最简单的一种方法是利用人工神经网络的特点,人工神经网络 ANN 本身就是具有层次结构的系统,如果给定一个神经网络,我们假设其输出与输入是相同的,然后训练调整其参数,得到每一层中的权重。自然地,我 ...
2016-07-13 10:32 0 14159 推荐指数:
借鉴前人的文章链接 http://blog.csdn.net/zouxy09/article/details/8777094 http://www.gene-seq.com/bbs/thread- ...
来源和参考,参见以下链接等相关网站: http://blog.csdn.net/zouxy09/article/details/8775360 http://blog.csdn.net/zouxy ...
最近学习DeepLearning, 在网上找到了一个自编码器的代码,运行以下,还比较好用,分享如下。由于代码出处无处可考,故不予特殊说明。 以上代码为 pytorch 运行效果图: ...
https://blog.csdn.net/qq_27825451/article/details/84968890 一、从生成模型开始谈起1、什么是生成模型? 概率统计层面:能够在给丁某一些隐含参数的条件下,随机生成观测数据的这样一种模型,称之为“生成模型”。它给观测值和比周数据系列制定一个 ...
原文地址:https://blog.csdn.net/marsjhao/article/details/73480859 一、什么是自编码器(Autoencoder) 自动编码器是一种数据的压缩算法,其中数据的压缩和解压缩函数是数据相关的、有损的、从样本中自动学习的。在大部分提到 ...
1、自编码的定义 自编码器是一种数据的压缩算法,属于无监督学习,以自身X作为输出值,但输出值X‘ 和自身X之间还是有一些差异的。自编码器也是一种有损压缩,可以通过使得损失函数最小,来实现X’ 近似于X的值。简单的自编码器是一种三层的神经网络模型,包含数据输入层、隐藏层、输出重构层,同时也是 ...
前言 本篇文章可作为<利用变分自编码器实现深度换脸(DeepFake)>的知识铺垫。 自编码器是什么,自编码器是个神奇的东西,可以提取数据中的深层次的特征。 例如我们输入图像,自编码器可以将这个图像上“人脸”的特征进行提取(编码过程),这个特征就保存为自编码器的潜变量,例如这张 ...
稀疏自编码器的学习结构: 稀疏自编码器Ⅰ: 神经网络 反向传导算法 梯度检验与高级优化 稀疏自编码器Ⅱ: 自编码算法与稀疏性 可视化自编码器训练结果 Exercise: Sparse Autoencoder 自编码算法与稀疏性 已经讨论了神经网络在有 ...