Tensorflow循环神经网络 循环神经网络 梯度消失问题 LSTM网络 RNN其他变种 用RNN和Tensorflow实现手写数字分类 一.循环神经网络 RNN背后的思想就是利用顺序信息.在传统的神经网络中,我们假设所有输入(或输出 ...
本文禁止转载,禁止用于各类讲座及ppt中,违者必究 前几天看到一个有意思的分享,大意是讲如何用Tensorflow教神经网络自动创造音乐。听起来好好玩有木有 作为一个Coldplay死忠粉,第一想法就是自动生成一个类似Coldplay曲风的音乐,于是,开始跟着Github上的教程 项目的名称:Project Magenta 一步一步做,弄了三天,最后的生成的音乐在这里 如果有人能告诉我怎么在博客 ...
2016-07-12 18:30 26 27017 推荐指数:
Tensorflow循环神经网络 循环神经网络 梯度消失问题 LSTM网络 RNN其他变种 用RNN和Tensorflow实现手写数字分类 一.循环神经网络 RNN背后的思想就是利用顺序信息.在传统的神经网络中,我们假设所有输入(或输出 ...
为了参加今年的软件杯设计大赛,这几个月学习了很多新知识。现在大赛的第二轮作品优化已经提交,开始对这四个月所学知识做一些总结与记录。 用TensorFlow搭建神经网络。TensorFlow将神经网络的进行封装,使得深度学习变得简单已用,即使是不懂的深度学习算法原理的人都可以很容易的搭建 ...
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Tensorflow官方提供的示例. 关于神经网络与误差反向传播的原理可以参考作者的另一篇博文BP神经网络与Python实现. 了解 ...
一维数据集上的神经网络 代码实现: 输出结果如下: 卷积层 首先,卷积层输入序列是25个元素的一维数组。卷积层的功能是相邻5个元素与过滤器(长度为5的向量)内积。因为移动步长为1,所以25个元素的序列中一共有21个相邻为5的序列,最终 ...
在TensorFlow中,使用tr.nn.conv2d来实现卷积操作,使用tf.nn.max_pool进行最大池化操作。通过闯传入不同的参数,来实现各种不同类型的卷积与池化操作。 卷积函数tf.nn.conv2d TensorFlow里使用tf.nn.conv2d函数来实现卷积,其格式 ...
神经网络模型的训练过程其实质上就是神经网络参数的设置过程 在神经网络优化算法中最常用的方法是反向传播算法,下图是反向传播算法流程图: 从上图可知,反向传播算法实现了一个迭代的过程,在每次迭代的开始,先需要选取一小部分训练数据,这一小部分数据叫做一个batch。然后这一个batch会通过前 ...
TensorFlow实现与优化深度神经网络 转载请注明作者:梦里风林Github工程地址:https://github.com/ahangchen/GDLnotes欢迎star,有问题可以到Issue区讨论官方教程地址视频/字幕下载 全连接神经网络 辅助阅读:TensorFlow ...
前馈神经网络的弊端 前一篇文章介绍过MNIST,是采用的前馈神经网络的结构,这种结构有一个很大的弊端,就是提供的样本必须面面俱到,否则就容易出现预测失败。如下图: 同样是在一个图片中找圆形,如果左边为训练样本,右边为测试样本,如果只训练了左边的情况,右边的一定会预测错误,然而在我们人眼看 ...