牛顿法 考虑如下无约束极小化问题: $$\min_{x} f(x)$$ 其中$x\in R^N$,并且假设$f(x)$为凸函数,二阶可微。当前点记为$x_k$,最优点记为$x^*$。 梯度下降法用的是一阶偏导,牛顿法用二阶偏导。以标量为例,在当前点进行泰勒二阶展开: $$\varphi ...
牛顿法 考虑如下无约束极小化问题: $$\min_{x} f(x)$$ 其中$x\in R^N$,并且假设$f(x)$为凸函数,二阶可微。当前点记为$x_k$,最优点记为$x^*$。 梯度下降法用的是一阶偏导,牛顿法用二阶偏导。以标量为例,在当前点进行泰勒二阶展开: $$\varphi ...
简介:最近在看逻辑回归算法,在算法构建模型的过程中需要对参数进行求解,采用的方法有梯度下降法和无约束项优化算法。之前对无约束项优化算法并不是很了解,于是在学习逻辑回归之前,先对无约束项优化算法中经典的算法学习了一下。下面将无约束项优化算法的细节进行描述。为了尊重别人的劳动成果,本文的出处 ...
一、牛顿法 对于优化函数\(f(x)\),在\(x_0\)处泰勒展开, \[f(x)=f(x_0)+f^{'}(x_0)(x-x_0)+o(\Delta x) \] 去其线性部分,忽略高阶无穷小,令\(f(x) = 0\)得: \[x=x_0-\frac{f(x_0)}{f ...
一.简介 通过前面几节的介绍,大家可以直观的感受到:对于大部分机器学习模型,我们通常会将其转化为一个优化问题,由于模型通常较为复杂,难以直接计算其解析解,我们会采用迭代式的优化手段,用数学语言描述如 ...
牛顿法和拟牛顿法 牛顿法(Newton method)和拟牛顿法(quasi Newton method)是求解无约束最优化问题的常用方法,收敛速度快。牛顿法是迭代算法,每一步需要求解海赛矩阵的逆矩阵,计算比较复杂。拟牛顿法通过正定矩阵近似海赛矩阵的逆矩阵或海赛矩阵,简化了这一 ...
数据、特征和数值优化算法是机器学习的核心,而牛顿法及其改良(拟牛顿法)是机器最常用的一类数字优化算法,今天就从牛顿法开始,介绍几个拟牛顿法算法。本博文只介绍算法的思想,具体的数学推导过程不做介绍。 1. 牛顿法 牛顿法的核心思想是”利用函数在当前点的一阶导数,以及二阶导数,寻找搜寻方向“(回想 ...
一、BFGS算法 在“优化算法——拟牛顿法之BFGS算法”中,我们得到了BFGS算法的校正公式: 利用Sherman-Morrison公式可对上式进行变换,得到 令,则得到: 二、BGFS算法存在的问题 在BFGS算法中。每次都要 ...
特点 相较于: 最优化算法3【拟牛顿法1】 BFGS算法使用秩二矩阵校正hesse矩阵的近似矩阵\(B\),即: \[B_{k+1}=B_k+\alpha\mu_k\mu_k^T+\beta\nu_k\nu_k^T \] 算法分析 将函数在\(x_{k+1}\)处二阶展开 ...