的大数据算法:随机森林模型+综合模型 模型组合(比如说有Boosting,Bagging等)与决策树相关的 ...
转载自:http: www.cnblogs.com LeftNotEasy archive random forest and gbdt.html 前言 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示 容易将得到的决策树做成图片展示出来 等。但是同时,单决策树又有一些不好的地方,比如说容易over fitting,虽然有一些方法,如剪枝可以减少这种情 ...
2016-06-29 22:40 0 3305 推荐指数:
的大数据算法:随机森林模型+综合模型 模型组合(比如说有Boosting,Bagging等)与决策树相关的 ...
前言 本系列为机器学习算法的总结和归纳,目的为了清晰阐述算法原理,同时附带上手代码实例,便于理解。 目录 k近邻(KNN) 决策树 线性回归 逻辑斯蒂回归 朴素贝叶斯 支持向量机(SVM ...
1 引言 决策树(Decision Tree)是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据中总结出决策规则,并用树状图的结构来呈现这些规则,以解决分类和回归问题。决策树中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类 ...
咱们正式进入了机器学习的模型的部分,虽然现在最火的的机器学习方面的库是Tensorflow, 但是这里还是先简单介绍一下另一个数据处理方面很火的库叫做sklearn。其实咱们在前面已经介绍了一点点sklearn,主要是在categorical data encoding那一块。其实sklearn ...
(Decision Tree)算法主要用来处理分类问题,是最经常使用的数据挖掘算法之一。 决策树 场景 ...
目录 决策树原理 决策树代码(Spark Python) 决策树原理 详见博文:http://www.cnblogs.com/itmorn/p/7918797.html 返回 ...
前言 过去几个月,一直在学习机器学习模型,输入只是学习的一部分,输出可以帮助自己更熟练地掌握概念和知识。把一个复杂的事物简单的讲述出来,才能表示真正弄懂了这个知识。所以我将在博客中尽量简单地把这些模型讲述出来,以加深自己的掌握,也为他人提供一点点参考。感谢大神刘建平Pinard的博客,如有 ...
原文:http://blog.csdn.net/aspirinvagrant/article/details/48415435 GBDT,全称Gradient Boosting Decision Tree,叫法比较多,如Treelink、 GBRT(Gradient Boost ...