code{white-space: pre;} pre:not([class]) { background-color: white; } . ...
本科毕业设计涉及用机器学习的方法训练预测模型,线性回归 SVM RF等方法表现均不理想,于是需要用简单的神经网络方法做对比实验。在对NN的优化没有深入理解的情况下,直接调用了R包提供的接口,在此略作记录,供以后反思改进。 主要用到了nnet neuralnet h o这几个包,具体的建模 预测 优化的方法在手册中均能查到。nnet neuralnet提供的都是单隐藏层的简单神经网络,h o提供了 ...
2016-06-29 15:40 0 1730 推荐指数:
code{white-space: pre;} pre:not([class]) { background-color: white; } . ...
本篇博客将会介绍R中的一个神经网络算法包:Neuralnet,通过模拟一组数据,展现其在R中是如何使用,以及如何训练和预测。在介绍Neuranet之前,我们先简单介绍一下神经网络算法。 人工神经网络(ANN),简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或计算模型。神经网络 ...
神经网络一直是迷人的机器学习模型之一,不仅因为花哨的反向传播算法,而且还因为它们的复杂性(考虑到许多隐藏层的深度学习)和受大脑启发的结构。 神经网络并不总是流行,部分原因是它们在某些情况下仍然存在计算成本高昂,部分原因是与支持向量机(SVM)等简单方法相比,它们似乎没有产生更好 ...
:包含每层神经元的数值向量。第一个元素是输入神经元的数量,最后一个元素是输出神经元的数量,剩余的是隐含 ...
人工神经网络(ANN),简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或计算模型。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统。现代神经网络是一种非线性统计性数据建模工具,常用来对输入和输出间复杂的关系进行建模,或用 ...
library(AMORE)data<-read.table('G:\\dataguru\\ML\\ML09\\基于BP网络的个人信贷信用评估\\基于BP网络的个人信贷信用评估\\german.data-numeric')for (i in 1:25) {data[,i] < ...
BP神经网络 百度百科:传送门 BP(back propagation)神经网络:一种按照误差逆向传播算法训练的多层前馈神经网络,是目前应用最广泛的神经网络 Gary.Script 实现过程 ...
目录 1.理解神经网络 1)基本概念 2)激活函数 3)网络拓扑 4)训练算法 2.神经网络应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估模型 5)提高 ...