在机器学习的分类问题中,我们都假设所有类别的分类代价是一样的。但是事实上,不同分类的代价是不一样的,比如我们通过一个用于检测患病的系统来检测马匹是否能继续存活,如果我们把能存活的马匹检测成患病,那么这匹马可能就会被执行安乐死;如果我们把不能存活的马匹检测成健康,那么就会继续喂养这匹马。一个代价是错 ...
Adaboost提升算法是机器学习中很好用的两个算法之一,另一个是SVM支持向量机 机器学习面试中也会经常提问到Adaboost的一些原理 另外本文还介绍了一下非平衡分类问题的解决方案,这个问题在面试中也经常被提到,比如信用卡数据集中,失信的是少数, : 的情况下怎么准确分类 一 引言 元算法 集成算法 :多个弱分类器的组合 弱分类器的准确率很低 接近随机了 这种组合可以是 不同算法 或 同一算 ...
2016-06-27 22:56 4 2794 推荐指数:
在机器学习的分类问题中,我们都假设所有类别的分类代价是一样的。但是事实上,不同分类的代价是不一样的,比如我们通过一个用于检测患病的系统来检测马匹是否能继续存活,如果我们把能存活的马匹检测成患病,那么这匹马可能就会被执行安乐死;如果我们把不能存活的马匹检测成健康,那么就会继续喂养这匹马。一个代价是错 ...
本文介绍logistic回归,和改进算法随机logistic回归,及一个病马是否可以治愈的案例。例子中涉及了数据清洗工作,缺失值的处理。 一 引言 1 sigmoid函数,这个非线性函数十分重要,f(z) = 1 / (1 + e^(-z) ), 画图 ...
。 adaBoost分类器就是一种元算法分类器,adaBoost分类器利用同一种基分类器(弱分类器),基于分类器的 ...
1.基本思想: 综合某些专家的判断,往往要比一个专家单独的判断要好。在”强可学习”和”弱可学习”的概念上来说就是我们通过对多个弱可学习的算法进行”组合提升或者说是强化”得到一个性能赶超强可学习算法的算法。如何地这些弱算法进行提升是关键!AdaBoost算法是其中的一个代表。 2.分类算法提升 ...
为什么电脑排版效果和手机排版效果不一样~ 目前只学习了python的基础语法,有些东西理解的不透彻,希望能一边看《机器学习实战》,一边加深对python的理解,所以写的内容很浅显,也许还会有一部分错误,希望得到大家的指正。在看到书上第一个KNN算法,实现简单的电影分类的时候,就遇到了很多问题 ...
--------------------------------------------------------------------------------------- 本系列文章为《机器学习实战》学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正。 源码在Python3.5 ...
1. 数据说明: Pima Indians Diabetes Data Set(皮马印第安人糖尿病数据集) 根据现有的医疗信息预测5年内皮马印第安人糖尿病发作的概率。 数据链接:https://archive.ics.uci.edu/ml/datasets ...
机器学习--分类问题 分类问题是监督学习的一个核心问题,它从数据中学习一个分类决策函数或分类模 型(分类器(classifier)),对新的输入进行输出预测,输出变量取有限个离散值。 决策树 决策树 ...