【代价函数】均方误差MSE 一、总结 一句话总结: 在线性回归问题中,常常使用MSE(Mean Squared Error)作为loss函数,而在分类问题中常常使用交叉熵作为loss函数。 1、sigmoid激活函数的问题? a、我们可以从sigmoid激活函数的导数特性图中 ...
mse是检验神经网络算法的误差分析 mse是平均平方误差性能函数,是网络性能函数。平方误差就是指误差的平方。 ...
2016-06-27 14:25 0 6070 推荐指数:
【代价函数】均方误差MSE 一、总结 一句话总结: 在线性回归问题中,常常使用MSE(Mean Squared Error)作为loss函数,而在分类问题中常常使用交叉熵作为loss函数。 1、sigmoid激活函数的问题? a、我们可以从sigmoid激活函数的导数特性图中 ...
经典的损失函数: ①交叉熵(分类问题):判断一个输出向量和期望向量有多接近。交叉熵刻画了两个概率分布之间的距离,他是分类问题中使用比较广泛的一种损失函数。概率分布刻画了不同事件发生的概率。 熵的定义:解决了对信息的量化度量问题,香农用信息熵的概念来描述信源的不确定度,第一次用数学语言阐明了概率 ...
为什么要用交叉熵来做损失函数: 在逻辑回归问题中,常常使用MSE(Mean Squared Error)作为loss函数,此时: 这里的 就表示期望输出,表示原始的实际输出(就是还没有加softmax)。这里的m表示有m个样本,loss为m个样本的loss均值。MSE在逻辑回归问题 ...
损失函数与代价函数:目前理解是损失函数就是代价函数,且在损失函数的基础上进行梯度下降,找到最优解。 损失函数:根据目标模型的不同,会分为回归损失函数,逻辑回归分类损失。 MSE损失函数:度量特征图之间的距离,目标是提取特征图推理一致性。平均平方误差(mean ...
损失函数用于描述模型预测值与真实值的差距大小,一般有两种比较常见的算法——均值平方差(MSE)和交叉熵。 1、均值平方差(MSE):指参数估计值与参数真实值之差平方的期望值。 在神经网络计算时,预测值要与真实值控制在同样的数据分布内,假设将预测值经过Sigmoid激活函数得到取值范围 ...
这篇写的比较详细: from: https://zhuanlan.zhihu.com/p/35709485 这篇文章中,讨论的Cross Entropy损失函数常用于分类问题中,但是为什么它会在分类问题中这么有效呢?我们先从一个简单的分类例子来入手。 1. 图像分类任务 我们希望根据图片 ...
【需要注意】MATLAB函数不能先定义后调用! 如下为先定义后调用,结果报错: 错误: 文件:justTest2.m 行:88 列:5脚本中的函数定义必须出现在文件的结尾。请将 "mymax" 函数定义后面的所有语句都移到第一个局部函数定义前面。 改为 ...