、贝叶斯(Bayes)判别和距离判别。 具体的,在费希尔判别中我们将主要讨论线性判别分析(Linear ...
可以转载,禁止修改。转载请注明作者以及原文链接 注:本文是从贝叶斯分类器的角度来讨论判别分析,有关贝叶斯分类器的概念可参考文末延伸阅读第 篇文章。至于Fisher判别分析,未来会连同PCA一同讨论。 判别分析也是一种分类器,与逻辑回归相比,它具有以下优势: 当类别的区分度高的时候,逻辑回归的参数估计不够稳定,它点在线性判别分析中是不存在的 如果样本量n比较小,而且在每一类响应变量中预测变量X近似 ...
2016-06-18 01:21 3 7898 推荐指数:
、贝叶斯(Bayes)判别和距离判别。 具体的,在费希尔判别中我们将主要讨论线性判别分析(Linear ...
1判别模型与生成模型 上篇报告中提到的回归模型是判别模型,也就是根据特征值来求结果的概率。形式化表示为,在参数确定的情况下,求解条件概率。通俗的解释为在给定特征后预测结果出现的概率。 比如说要确定一只羊是山羊还是绵羊,用判别模型的方法是先从历史数据中学习到模型,然后通过提取 ...
algorithm)、高斯判别分析(Gaussian DiscriminantAnalysis,GDA)、朴素贝叶 ...
简述 利用观测到的x,利用先验概率和类条件概率,决定x属于哪一类 后验概率无法直接获得,因此我们需要找到方法来计算它,而解决方法就是引入贝叶斯公式。 贝叶斯理论 可以看出,贝叶斯公式是“由果溯因”的思想,当知道某件事的结果后,由结果推断这件事是由各个原因导致的概率 ...
实际意义 判别分析于聚类分析的功能差不多,区别在于,聚类分析之前,没有人知道具体的是怎么分的类,分了哪几大类。而判别分析是已经把类别给分好,要做的是把没有分好类的数据观测,按照之前分好的类再进行分类。这里不同于生活中常见的分类先有具体的分类逻辑(这里叫做判别函数)。所以判别分的难点在于先由分好类 ...
线性回顾模型的贝叶斯估计 重新整理一下: y的期望: 举例说明 ...
目录 一、贝叶斯 什么是先验概率、似然概率、后验概率 公式推导 二、为什么需要朴素贝叶斯 三、朴素贝叶斯是什么 条件独立 举例:长肌肉 拉普拉斯平滑 半朴素贝叶斯 一、贝叶斯 ...
逻辑回归是一个分类器,其基本思想可以概括为:对于一个二分类(0~1)问题,若P(Y=1/X)>0.5则归为1类,若P(Y=1/X)<0.5,则归为0类。 一、模型概述 1、Sigmoi ...