由于streaming流程序一旦运行起来,基本上是无休止的状态,除非是特殊情况,否则是不会停的。因为每时每刻都有可能在处理数据,如果要停止也需要确认当前正在处理的数据执行完毕,并且不能再接受新的数据,这样才能保证数据不丢不重。 同时,也由于流程序比较特殊,所以也不能直接kill -9这种 ...
本期内容 : Spark Streaming中的空RDD处理 Spark Streaming程序的停止 由于Spark Streaming的每个BatchDuration都会不断的产生RDD,空RDD有很大概率的,如何进行处理将影响其运行的效率 资源的有效使用。 Spark Streaming会不断的接收数据,在不清楚接收的数据处理到什么状态,如果你强制停止掉的话,会涉及到数据不完整操作或者一致性 ...
2016-06-06 22:07 0 4736 推荐指数:
由于streaming流程序一旦运行起来,基本上是无休止的状态,除非是特殊情况,否则是不会停的。因为每时每刻都有可能在处理数据,如果要停止也需要确认当前正在处理的数据执行完毕,并且不能再接受新的数据,这样才能保证数据不丢不重。 同时,也由于流程序比较特殊,所以也不能直接kill -9这种 ...
窗口函数,就是在DStream流上,以一个可配置的长度为窗口,以一个可配置的速率向前移动窗口,根据窗口函数的具体内容,分别对当前窗口中的这一波数据采取某个对应的操作算子。 需要注意的是窗口长度,和窗 ...
一、Streaming与Flume的联调 Spark 2.2.0 对应于 Flume 1.6.0 两种模式: 1. Flume-style push-based approach: Flume推送数据給Streaming ...
Spark Streaming介绍 Spark Streaming概述 Spark Streaming makes it easy to build scalable fault-tolerant streaming applications. 它可以非常容易的构建一个可扩展 ...
SparkStreaming Spark Streaming类似于Apache Storm,用于流式数据的处理。Spark Streaming有高吞吐量和容错能力强等特点。Spark Streaming支持的数据源有很多,例如:Kafka、Flume、Twitter、ZeroMQ和简单 ...
正式开始:基于spark流处理框架的学习 使用Flume+Kafka+SparkStreaming进行实时日志分析:如何实时地(准实时,每分钟分析一次)收集日志,处理日志,把处理后的记录存入Hive中。 Flume会实时监控写入日志的磁盘,只要有新的日志写入,Flume就会将日志 ...
Spark Streaming中空RDD的处理-Spark-about云开发 [S ...
Data streaming转为DataFrame,不能直接一步转到DF,需要先转为RDD,然后再转到DF,我们用流式处理数据后,再通过spark sql实时获取我们想要的结果。 1.首先老规矩,创建spark上下文对象,spark SQL和spark Streaming,再创建个socket ...