Recurrent Models of Visual Attention Google DeepMind 模拟人类看东西的方式,我们并非将目光放在整张图像上,尽管有时候会从总体上对目标进行把握,但是也是将目光按照某种次序(例如,从上倒下,从左到右等等)在图像上进行扫描,然后从一个区域 ...
Multiple Object Recognition WithVisual Attention Google DeepMind ICRL 本文提出了一种基于 attention 的用于图像中识别多个物体的模型。该模型是利用RL来训练Deep RNN,以找到输入图像中最相关的区域。尽管在训练的过程中,仅仅给出了类别标签,但是仍然可以学习定位并且识别出多个物体。 Deep Recurrent Vi ...
2016-06-05 00:41 0 4778 推荐指数:
Recurrent Models of Visual Attention Google DeepMind 模拟人类看东西的方式,我们并非将目光放在整张图像上,尽管有时候会从总体上对目标进行把握,但是也是将目光按照某种次序(例如,从上倒下,从左到右等等)在图像上进行扫描,然后从一个区域 ...
Fully Convolutional Attention Localization Networks: Efficient Attention Localization for Fine-Grained Recognition 细粒度的识别(Fine-grained ...
作者: ShijieSun, Naveed Akhtar, HuanShengSong, Ajmal Mian, Mubarak Shah 来源: arXiv:1810.11780v1 项目: ...
Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks 2021.5.12 Under review https://arxiv.org/abs/2105.02358 ...
“Two-Stream Convolutional Networks for Action Recognition in Videos”(2014NIPS) Two Stream方法最初在这篇文章中被提出,基本原理为对视频序列中每两帧计算密集光流,得到密集光流的序列(即temporal信息 ...
地址:https://arxiv.org/pdf/2006.11538.pdf github:https://github.com/iduta/pyconv 目前的卷积神经网络普遍使用3×3 ...
这篇笔记,仅仅是对选择性算法介绍一下原理性知识,不对公式进行推倒. 前言: 这篇论文介绍的是,如果快速的找到的可能是物体目标的区域,不像使用传统的滑动窗口来暴力进行区域识别.这里是使用算法从多个维度对找到图片中,可能的区域目标,减少目标碎片,提升物体检测效率. 下面是这篇文章的笔记 ...
Bilinear CNN Models for Fine-grained Visual Recognition CVPR 2015 本文提出了一种双线性模型( bilinear models),一种识别结构,该结构由两个特征提取器产生,两个输出是图像每一个位置的外积 ...