梯度下降法先随机给出参数的一组值,然后更新参数,使每次更新后的结构都能够让损失函数变小,最终达到最小即可。在梯度下降法中,目标函数其实可以看做是参数的函数,因为给出了样本输入和输出值后,目标函数就只剩下参数部分了,这时可以把参数看做是自变量,则目标函数变成参数的函数了。梯度下降每次都是更新每个参数 ...
问题的引入: 考虑一个典型的有监督机器学习问题,给定m个训练样本S x i ,y i ,通过经验风险最小化来得到一组权值w,则现在对于整个训练集待优化目标函数为: 其中为单个训练样本 x i ,y i 的损失函数,单个样本的损失表示如下: 引入L 正则,即在损失函数中引入,那么最终的损失为: 注意单个样本引入损失为 并不用除以m : 正则化的解释 这里的正则化项可以防止过拟合,注意是在整体的损失函 ...
2016-05-12 12:51 0 23369 推荐指数:
梯度下降法先随机给出参数的一组值,然后更新参数,使每次更新后的结构都能够让损失函数变小,最终达到最小即可。在梯度下降法中,目标函数其实可以看做是参数的函数,因为给出了样本输入和输出值后,目标函数就只剩下参数部分了,这时可以把参数看做是自变量,则目标函数变成参数的函数了。梯度下降每次都是更新每个参数 ...
一、梯度gradient http://zh.wikipedia.org/wiki/%E6%A2%AF%E5%BA%A6 在标量场f中的一点处存在一个矢量G,该矢量方向为f在该点处变化率最大的方向,其模也等于这个最大变化率的数值,则矢量G称为标量场f的梯度。 在向量微积分中,标量场的梯度 ...
转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 这几种方法呢都是在求最优解中经常出现的方法,主要是应用迭代的思想来逼近。在梯度下降算法中,都是围绕以下这个式子展开: \[\frac {\partial ...
1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad f(x,y)或者▽f(x,y)。对于在点(x0,y0)的具体梯度向量 ...
(1)梯度下降法 在迭代问题中,每一次更新w的值,更新的增量为ηv,其中η表示的是步长,v表示的是方向 要寻找目标函数曲线的波谷,采用贪心法:想象一个小人站在半山腰,他朝哪个方向跨一步,可以使他距离谷底更近(位置更低),就朝这个方向前进。这个方向可以通过微分得到。选择足够小的一段曲线 ...
理解随机梯度下降,首先要知道梯度下降法,故先介绍梯度下降法: 梯度下降法 大多数机器学习或者深度学习算法都涉及某种形式的优化。 优化指的是改变 以最小化或最大化某个函数 的任务。 我们通常以最小化 指代大多数最优化问题。 最大化可经由最小化算法最小化 来实现 ...
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。这里就对梯度下降法做一个完整的总结。 1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来 ...
随机梯度下降: 我们用X1,X2..Xn 去描述feature里面的分量,比如x1=房间的面积,x2=房间的朝向,等等,我们可以做出一个估计函数: θ在这儿称为参数,在这儿的意思是调整feature中每个分量的影响力,就是到底是房屋的面积更重要还是房屋的地段更重要。为了如 ...