引言 逻辑回归常用来处理分类问题,最常用来处理二分类问题。 生活中经常遇到具有两种结果的情况(冬天的北京会下雪,或者不会下雪;暗恋的对象也喜欢我,或者不喜欢我;今年的期末考试会挂科,或者不会挂科……)。对于这些二分类结果,我们通常会有一些输入变量,或者是连续性,或者是离散型 ...
Logistic Regression and Newton s Method 作业链接:http: openclassroom.stanford.edu MainFolder DocumentPage.php course DeepLearning amp doc exercises ex ex .html 数据是 个考上大学的小朋友和 个没有考上大学的小朋友在两次测验中的成绩,和他们是否通过 ...
2016-05-09 19:58 0 1885 推荐指数:
引言 逻辑回归常用来处理分类问题,最常用来处理二分类问题。 生活中经常遇到具有两种结果的情况(冬天的北京会下雪,或者不会下雪;暗恋的对象也喜欢我,或者不喜欢我;今年的期末考试会挂科,或者不会挂科……)。对于这些二分类结果,我们通常会有一些输入变量,或者是连续性,或者是离散型 ...
前言: 本节主要是练习regularization项的使用原则。因为在机器学习的一些模型中,如果模型的参数太多,而训练样本又太少的话,这样训练出来的模型很容易产生过拟合现象。因此在模型的损失函数中,需要对模型的参数进行“惩罚”,这样的话这些参数就不会太大,而越小的参数说明模型越简单 ...
前言: 在上一讲Deep learning:五(regularized线性回归练习)中已经介绍了regularization项在线性回归问题中的应用,这节主要是练习regularization项在logistic回归中的应用,并使用牛顿法来求解模型的参数。参考的网页资料为:http ...
Deep Learning 用逻辑回归训练图片的典型步骤. 笔记摘自:https://xienaoban.github.io/posts/59595.html 1. 处理数据 1.1 向量化(Vectorization) 将每张图片的高和宽和RGB展为向量,最终X的shape ...
牛顿法 ...
zaish上一节讲了线性回归中L2范数的应用,这里继续logistic回归L2范数的应用。 先说一下问题:有一堆二维数据点,这些点的标记有的是1,有的是0.我们的任务就是制作一个分界面区分出来这些点。如图(标记是1的样本用+表示,0的用红点表示): 这其实是一个二分类问题,然后我们就想 ...
前言: 现在来进入sparse autoencoder的一个实例练习,参考Ng的网页教程:Exercise:Sparse Autoencoder。这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共10000张,现在需要用sparse ...
前言: 本节来练习下logistic regression相关内容,参考的资料为网页:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc ...