就对决策树算法原理做一个总结,上篇对ID3, C4.5的算法思想做了总结,下篇重点对CART算法做一个 ...
一 认识决策树 决策树分类原理 决策树是通过一系列规则对数据进行分类的过程。它提供一种在什么条件下会得到什么值的类似规则的方法。决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。 近来的调查表明决策树也是最经常使用的数据挖掘算法,它的概念非常简单。决策树算法之所以如此流行,一个很重要的原因就是使用者基本上不用了解机器学习算法,也不用深究它是如何工作的。直观看上去, ...
2016-05-08 18:01 2 59829 推荐指数:
就对决策树算法原理做一个总结,上篇对ID3, C4.5的算法思想做了总结,下篇重点对CART算法做一个 ...
决策树算法在机器学习中算是很经典的一个算法系列了。它既可以作为分类算法,也可以作为回归算法,同时也特别适合集成学习比如随机森林。本文就对决策树算法原理做一个总结,上篇对ID3, C4.5的算法思想做了总结,下篇重点对CART算法做一个详细的介绍。选择CART做重点介绍的原因是 ...
//2019.08.17#决策树算法1、决策树算法是一种非参数的决策算法,它根据数据的不同特征进行多层次的分类和判断,最终决策出所需要预测的结果。它既可以解决分类算法,也可以解决回归问题,具有很好的解释能力。 图 原理图2、对于决策树的构建方法具有多种出发点,它具有多种构建方式,如何构建 ...
一、本文总述 决策树是机器学习领域最基础且应用最广泛的算法模型,本文将详细介绍决策树模型的原理,并通过一个案例,着重从特征选择、剪枝等方面讲述决策树模型的构建,讨论并研究决策树模型评估准则。 二、决策树的概念 决策树是附加概率结果的一个树状的决策图,是直观运用统计概率分析的图法。机器学习中 ...
在决策树算法原理(上)这篇里,我们讲到了决策树里ID3算法,和ID3算法的改进版C4.5算法。对于C4.5算法,我们也提到了它的不足,比如模型是用较为复杂的熵来度量,使用了相对较为复杂的多叉树,只能处理分类不能处理回归等。对于这些问题, CART算法大部分做了改进。CART算法也就 ...
Table of Contents 1 决策树概述 1.1 决策树的决策方式 1.2 决策树的规则学习过程 2 特征选择 2.1 信息熵 2.1.1 二分类 2.1.2 多分 ...
1、决策树原理 1.1、定义 分类决策树模型是一种描述对实例进行分类的树形结构。决策树由结点和有向边组成。结点有两种类型:内部节点和叶节点,内部节点表示一个特征或属性,叶节点表示一个类。 举一个通俗的栗子,各位立志于脱单的单身男女在找对象的时候就已经完完全全使用了决策树的思想。假设一位母亲 ...
决策树比较常用的算法模型,可以做分类也可以回归 决策树算法重点 对特征的选择,可以使用熵,也可以使用基尼系数,通过信息增益或者信息增益率选择最好的特征 决策树的剪枝,有两种策略,一种是预剪枝,一种是后剪枝,预剪枝可以通过限制树的高度,叶子节点个数,信息增益等进行,使得树边建立边剪枝 ...