一个简单的例子 朴素贝叶斯算法是一个典型的统计学习方法,主要理论基础就是一个贝叶斯公式,贝叶斯公式的基本定义如下: 这个公式虽然看上去简单,但它却能总结历史,预知未来。公式的右边是总结历史,公式的左边是预知未来,如果把Y看出类别,X看出特征,P(Yk|X)就是在已知特征X ...
朴素贝叶斯算法简单高效,在处理分类问题上,是应该首先考虑的方法之一。 准备知识 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。 这个定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P A B 的情况下如何求得P B A 。这里先解释什么是条件概率: 表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A ...
2016-05-02 18:34 3 32868 推荐指数:
一个简单的例子 朴素贝叶斯算法是一个典型的统计学习方法,主要理论基础就是一个贝叶斯公式,贝叶斯公式的基本定义如下: 这个公式虽然看上去简单,但它却能总结历史,预知未来。公式的右边是总结历史,公式的左边是预知未来,如果把Y看出类别,X看出特征,P(Yk|X)就是在已知特征X ...
1.贝叶斯定理 设X是数据元组。在贝叶斯的术语中,X看做是证据。通常,X用n个属性集的测量值描述。令H为某种假设,如数据元组X属于某个特定类C。对于分类问题,希望确定给定证据或者观测数据元组X,假设H成立的概率为P(H|X)。换言之,给定X的属性描述,找出元组X属于类C的概率 ...
在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同。对于大多数的分类算法,比如决策树,KNN,逻辑回归,支持向量机等,他们都是判别方法,也就是直接学习出特征输出Y和特征X之间的关系,要么是决策函数$Y=f(X)$,要么是条件分布$P(Y|X)$。但是朴素贝叶斯却是生成 ...
朴素贝叶斯是一种十分简单的分类算法,称其朴素是因为其思想基础的简单性,就文本分类而言,他认为词袋中的两两词之间的关系是相互独立的,即一个对象的特征向量中的每个维度都是互相独立的。这是朴素贝叶斯理论的思想基础。 朴素贝叶斯分类的正式定义: 设x={}为一个待分类项,而每个a为x的一个特征 ...
朴素贝叶斯 算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类别问题 缺点:对输入数据的准备方式敏感 适用数据类型:标称型数据 算法思想: 朴素贝叶斯比如我们想判断一个邮件是不是垃圾邮件,那么我们知道的是这个邮件中的词 ...
1、朴素贝叶斯算法介绍 一个待分类项x=(a,b,c...),判断x属于y1,y2,y3...类别中的哪一类。 贝叶斯公式: 算法定义如下: (1)、设x={a1, a2, a3, ...}为一个待分类项,而a1, a2, a3...分别为x的特征 (2)、有类别集合C={y1 ...
叶斯却是生成方法,这种算法简单,也易于实现。 1.基本概念 朴素贝叶斯:贝叶斯分类是一类分类算法的 ...
github:代码实现 本文算法均使用python3实现 1. 朴素贝叶斯是什么 依据《统计学方法》上介绍: 朴素贝叶斯法(Naive Bayes)是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布 ...