机器学习概念 机器学习 (Machine Learning) 是近 20 多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。 机器学习理论主要是设计和分析一些让计算机可以自动学习的算法。机器学习算法是一类从数据中自动分析获得规律 ...
本文对决策树算法进行简单的总结和梳理,并对著名的决策树算法ID Iterative Dichotomiser 迭代二分器 进行实现,实现采用Python语言,一句老梗, 人生苦短,我用Python ,Python确实能够省很多语言方面的事,从而可以让我们专注于问题和解决问题的逻辑。 根据不同的数据,我实现了三个版本的ID 算法,复杂度逐步提升: .纯标称值无缺失数据集 .连续值和标称值混合且无缺失 ...
2016-04-24 23:28 5 4839 推荐指数:
机器学习概念 机器学习 (Machine Learning) 是近 20 多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。 机器学习理论主要是设计和分析一些让计算机可以自动学习的算法。机器学习算法是一类从数据中自动分析获得规律 ...
决策树算法是一种监督式学习算法,它简单好用,易于解释,在金融科技,数字健康,教育服务,消费互联网等许多领域发挥着积极作用。决策树算法学习的结果,类似下图结构: 本文首先介绍决策树的原理,然后基于tidymodels框架设计和执行决策树算法以解决实际问题。 一、决策树算法原理 决策树 ...
(一)认识决策树 1、决策树分类原理 决策树是通过一系列规则对数据进行分类的过程。它提供一种在什么条件下会得到什么值的类似规则的方法。决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。 近来的调查表明决策树也是最经常使用的数据挖掘算法,它的概念 ...
决策树比较常用的算法模型,可以做分类也可以回归 决策树算法重点 对特征的选择,可以使用熵,也可以使用基尼系数,通过信息增益或者信息增益率选择最好的特征 决策树的剪枝,有两种策略,一种是预剪枝,一种是后剪枝,预剪枝可以通过限制树的高度,叶子节点个数,信息增益等进行,使得树边建立边剪枝 ...
1. 决策树算法 1.1 背景知识 信息量\(I(X)\):指一个样本/事件所蕴含的信息,如果一个事情的概率越大,那么就认为该事件所蕴含的信息越少,确定事件不携带任何信息量 \(I(X)=-log(p(x))\) 信息熵\(H(X)\):用来描述系统信息量 ...
上一篇讲了ID3决策树原理,现在开始拿一个例子进行实战 一、python机器学习库 scikit-learn。sklearn是一个Python第三方提供的非常强力的机器学习库,它包含了从数据预处理到训练模型的各个方面。在实战使用scikit-learn中 ...
算法思想 决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。 其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。 使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出 ...
利用ID3算法来判断某天是否适合打网球。 (1)类别属性信息熵的计算由于未分区前,训练数据集中共有14个实例, 其中有9个实例属于yes类(适合打网球的),5个实例属于no类(不适合打网球), 因此分区前类别属性的熵为: (2)非类别属性信息熵 ...